Description

 

It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nickel, which was made of copper. They were both so eager to get it and the fighting was so fierce, they stretched the coin to great length and thus created copper-wire.

Not commonly known is that the fighting started, after the two Dutch tried to divide a bag with coins between the two of them. The contents of the bag appeared not to be equally divisible. The Dutch of the past couldn't stand the fact that a division should favour one of them and they always wanted a fair share to the very last cent. Nowadays fighting over a single cent will not be seen anymore, but being capable of making an equal division as fair as possible is something that will remain important forever...

That's what this whole problem is about. Not everyone is capable of seeing instantly what's the most fair division of a bag of coins between two persons. Your help is asked to solve this problem.

Given a bag with a maximum of 100 coins, determine the most fair division between two persons. This means that the difference between the amount each person obtains should be minimised. The value of a coin varies from 1 cent to 500 cents. It's not allowed to split a single coin.

Input

A line with the number of problems n, followed by n times:

  • a line with a non negative integer m () indicating the number of coins in the bag
  • a line with m numbers separated by one space, each number indicates the value of a coin.

Output

The output consists of n lines. Each line contains the minimal positive difference between the amount the two persons obtain when they divide the coins from the corresponding bag.

Sample Input

2
3
2 3 5
4
1 2 4 6

Sample Output

0
1

dp题,dp[i]的只有 0和1,0表示不能组成钱数i,1表示可以。转移方程:if(dp[i]) dp[j+coin[i]]=1; 这样把所有的可能组成结果找出来,

然后从sum/2向下找(向上也行),第一个找到的就是所求的结果,表示某一个人能过拿到的钱数,然后进行进一步计算。

#include<bits/stdc++.h>
using namespace std;
int dp[*+];
int main()
{
int n;
cin>>n;
int coin[];
while (n--)
{
memset(dp,,sizeof(dp));
long long int sum=;
int m;
cin>>m;
for(int i=;i<m;i++)
{
cin>>coin[i];
sum+=coin[i];
}
dp[]=;
for(int i=;i<m;i++)
{
for(int j=sum;j>=;j--)
if(dp[j])
dp[j+coin[i]]=;
}
int j=sum/;
while(!dp[j]) j--;
printf("%d\n",abs(sum-*j)); }
return ;
}

uva 562的更多相关文章

  1. UVA 562(01背包)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=114&page=s ...

  2. UVA 562 Dividing coins --01背包的变形

    01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostre ...

  3. UVA 562 Dividing coins (01背包)

    题意:给你n个硬币,和n个硬币的面值.要求尽可能地平均分配成A,B两份,使得A,B之间的差最小,输出其绝对值.思路:将n个硬币的总价值累加得到sum,   A,B其中必有一人获得的钱小于等于sum/2 ...

  4. UVA 562 Dividing coins

    题目描述:给出一些不同面值的硬币,每个硬币只有一个.将这些硬币分成两堆,并且两堆硬币的面值和尽可能接近. 分析:将所有能够取到的面值数标记出来,然后选择最接近sum/2的两个面值 状态表示:d[j]表 ...

  5. UVA 562 Dividing coins(dp + 01背包)

    Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...

  6. UVA 562 Dividing coins (01背包)

    //平分硬币问题 //对sum/2进行01背包,sum-2*dp[sum/2] #include <iostream> #include <cstring> #include ...

  7. UVa 562 - Dividing coins 均分钱币 【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/E 题目大意: 给你一堆硬币,让你分成两堆,分别给A,B两个人,求两人得到的最小差. 解题思路: 求解两人 ...

  8. UVA 562 Dividing coins【01背包 / 有一堆各种面值的硬币,将所有硬币分成两堆,使得两堆的总值之差尽可能小】

    It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...

  9. UVA 562 Dividing coins 分硬币(01背包,简单变形)

    题意:一袋硬币两人分,要么公平分,要么不公平,如果能公平分,输出0,否则输出分成两半的最小差距. 思路:将提供的整袋钱的总价取一半来进行01背包,如果能分出出来,就是最佳分法.否则背包容量为一半总价的 ...

随机推荐

  1. Ubuntu 12.04 安装 Chrome浏览器

    1,先到chrome官网下载一个安装包 http://www.google.com/intl/zh-CN/chrome/ 2,ctrl+alt+t 打开终端. 3,在终端里输入sudo apt-get ...

  2. malloc 函数到底做了什么?

    请看下面的代码. 猜测结果是什么?编译通过吗? #include <stdio.h> #include <stdlib.h> int main() { ; char *ptr ...

  3. 理解css中的line-height

    在css中,line-height有下面五种可能的值:我们来看看w3c中列出如下可能值: normal:默认,设置合理的行间距. number:设置数字,此数字会与当前的字体尺寸相乘来设置行间距. l ...

  4. odbc错误信息一览表

    ODBC 错误信息 根据 X/Open 和 SQL Access Group SQL CAE 规范 (1992) 所进行的定义,SQLERROR 返回 SQLSTATE 值.SQLSTATE 值是包含 ...

  5. iOS 工作遇到问题记录

    iOS 工作遇到问题记录 1.UITableView的scrollDelegate问题 下午遇到一个奇怪的问题,之前都没有注意过,由于A VC中要实现tableView和其他View位置的联动,所以实 ...

  6. ReactiveCocoa 和 MVVM 入门 (转)

    翻译自ReactiveCocoa and MVVM, an Introduction. 文中引用的 Gist 可能无法显示.为了和谐社会, 请科学上网. MVC 任何一个正经开发过一阵子软件的人都熟悉 ...

  7. NOIP2011 聪明的质监员

    描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li  ...

  8. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  9. mysql.msi安装流程

    Mysql For Windows安装图解 演示安装版本:mysql-5.5.20-win32.msi(目前是mysql for windows的最新版)安装环境:Windows Server 200 ...

  10. php如何将数组保存为文件的方法? 三个方法让你快速把数组保存成为文件存储

    php 缓存数组形式的变量,实际上就是将 php 将数组写入到一个文本文件或者后缀名为 .php 存储起来,使用的时候直接调用这个文件.那么如何使用 php 将数组保存为文本格式的文件呢?下面分享三种 ...