Description

 

It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nickel, which was made of copper. They were both so eager to get it and the fighting was so fierce, they stretched the coin to great length and thus created copper-wire.

Not commonly known is that the fighting started, after the two Dutch tried to divide a bag with coins between the two of them. The contents of the bag appeared not to be equally divisible. The Dutch of the past couldn't stand the fact that a division should favour one of them and they always wanted a fair share to the very last cent. Nowadays fighting over a single cent will not be seen anymore, but being capable of making an equal division as fair as possible is something that will remain important forever...

That's what this whole problem is about. Not everyone is capable of seeing instantly what's the most fair division of a bag of coins between two persons. Your help is asked to solve this problem.

Given a bag with a maximum of 100 coins, determine the most fair division between two persons. This means that the difference between the amount each person obtains should be minimised. The value of a coin varies from 1 cent to 500 cents. It's not allowed to split a single coin.

Input

A line with the number of problems n, followed by n times:

  • a line with a non negative integer m () indicating the number of coins in the bag
  • a line with m numbers separated by one space, each number indicates the value of a coin.

Output

The output consists of n lines. Each line contains the minimal positive difference between the amount the two persons obtain when they divide the coins from the corresponding bag.

Sample Input

2
3
2 3 5
4
1 2 4 6

Sample Output

0
1

dp题,dp[i]的只有 0和1,0表示不能组成钱数i,1表示可以。转移方程:if(dp[i]) dp[j+coin[i]]=1; 这样把所有的可能组成结果找出来,

然后从sum/2向下找(向上也行),第一个找到的就是所求的结果,表示某一个人能过拿到的钱数,然后进行进一步计算。

#include<bits/stdc++.h>
using namespace std;
int dp[*+];
int main()
{
int n;
cin>>n;
int coin[];
while (n--)
{
memset(dp,,sizeof(dp));
long long int sum=;
int m;
cin>>m;
for(int i=;i<m;i++)
{
cin>>coin[i];
sum+=coin[i];
}
dp[]=;
for(int i=;i<m;i++)
{
for(int j=sum;j>=;j--)
if(dp[j])
dp[j+coin[i]]=;
}
int j=sum/;
while(!dp[j]) j--;
printf("%d\n",abs(sum-*j)); }
return ;
}

uva 562的更多相关文章

  1. UVA 562(01背包)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=114&page=s ...

  2. UVA 562 Dividing coins --01背包的变形

    01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostre ...

  3. UVA 562 Dividing coins (01背包)

    题意:给你n个硬币,和n个硬币的面值.要求尽可能地平均分配成A,B两份,使得A,B之间的差最小,输出其绝对值.思路:将n个硬币的总价值累加得到sum,   A,B其中必有一人获得的钱小于等于sum/2 ...

  4. UVA 562 Dividing coins

    题目描述:给出一些不同面值的硬币,每个硬币只有一个.将这些硬币分成两堆,并且两堆硬币的面值和尽可能接近. 分析:将所有能够取到的面值数标记出来,然后选择最接近sum/2的两个面值 状态表示:d[j]表 ...

  5. UVA 562 Dividing coins(dp + 01背包)

    Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...

  6. UVA 562 Dividing coins (01背包)

    //平分硬币问题 //对sum/2进行01背包,sum-2*dp[sum/2] #include <iostream> #include <cstring> #include ...

  7. UVa 562 - Dividing coins 均分钱币 【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/E 题目大意: 给你一堆硬币,让你分成两堆,分别给A,B两个人,求两人得到的最小差. 解题思路: 求解两人 ...

  8. UVA 562 Dividing coins【01背包 / 有一堆各种面值的硬币,将所有硬币分成两堆,使得两堆的总值之差尽可能小】

    It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...

  9. UVA 562 Dividing coins 分硬币(01背包,简单变形)

    题意:一袋硬币两人分,要么公平分,要么不公平,如果能公平分,输出0,否则输出分成两半的最小差距. 思路:将提供的整袋钱的总价取一半来进行01背包,如果能分出出来,就是最佳分法.否则背包容量为一半总价的 ...

随机推荐

  1. 关于NGUI的动态加载后的刷新显示问题,解决办法!!

    http://momowing.diandian.com/post/2012-09-06/40038001275 最近碰NGUI用到它的动态列表功能(ps:就是加东西,删除东西).我这里用的是UIDr ...

  2. UITapGestureRecognizer

    UITapGestureRecognizer IOS的手势非常多, 但是特别容易其他视图起冲突的手势,要数UITapGestureRecognizer 于是有了gestureRecognizerSho ...

  3. [LA4108]SKYLINE

    [LA4108]SKYLINE 试题描述 The skyline of Singapore as viewed from the Marina Promenade (shown on the left ...

  4. 43. 动态规划求解n个骰子的点数和出现概率(或次数)[Print sum S probability of N dices]

    [题目] 把N个骰子扔在地上,所有骰子朝上一面的点数之和为S.输入N,打印出S的所有可能的值出现的概率. [分析] 典型的动态规划题目. 设n个骰子的和为s出现的次数记为f(n,s),其中n=[1-N ...

  5. 【转】cas注册后自动登录

    本文转自:http://denger.iteye.com/blog/805743  1. 关于CAS的介绍不再累述,我想涉及过SSO同学应该都会对该框架所有了解,我们目前项目采用的CAS Server ...

  6. Cocos2d 学习资料推荐

    总算找到了一本介绍cocos2d的好书,注意,不是cocos2d-x!这本书叫 <cocos2d 权威指南> 定价99元,淘宝60多元,详细介绍了cocos2d的各个方面!不过你需要有oc ...

  7. Android studio 添加依赖

    以前添加依赖总是到github上下载源码,再添加源码到module的依赖当中,其实在studio中,应该使用maven库. 比如在github上看到了sliding-menu这个项目,就应该到mave ...

  8. (转)SQL Server 中WITH (NOLOCK)浅析

    概念介绍 开发人员喜欢在SQL脚本中使用WITH(NOLOCK), WITH(NOLOCK)其实是表提示(table_hint)中的一种.它等同于 READUNCOMMITTED . 具体的功能作用如 ...

  9. eclipse对Java程序的移植

    有些Java项目可能不在同一台计算机上开发,所以程序需要平台间进行移植,方法很简单,首先有一个最简单的项目HelloJava 当我们开发完成或者要休息了,一般都会保存然后在项目上右击,选择Close ...

  10. CPinyin unicode汉字查找拼音(支持多音字)

    下载代码 --------------------------------------------------------------------------------- 虽然很笨的办法,却非常有效 ...