参考:http://blog.csdn.net/v_july_v/article/details/8203674

#!/user/bin/env python
# -*- coding:utf8 -*- __author__ = 'zky@msn.cn' import sys
import numpy
import heapq
import Queue class KDNode(object):
def __init__(self, name, feature):
self.name = name
self.ki = -1
self.is_leaf = False
self.feature = feature
self.kd_left = None
self.kd_right = None def traverse(self, seq, order='in'):
if order == 'in':
if self.kd_left:
self.kd_left.traverse(seq, order)
seq.append(self)
if self.kd_right:
self.kd_right.traverse(seq, order)
elif order == 'pre':
seq.append(self)
if self.kd_left:
self.kd_left.traverse(seq, order)
if self.kd_right:
self.kd_right.traverse(seq, order)
elif order == 'post':
if self.kd_left:
self.kd_left.traverse(seq, order)
if self.kd_right:
self.kd_right.traverse(seq, order)
seq.append(self)
else:
assert(False) class NodeDistance(object):
def __init__(self, kd_node, distance):
self.kd_node = kd_node
self.distance = distance # here i use a reversed result, because heapq can support only min heap
def __cmp__(self, other):
ret = other.distance - self.distance
if ret > 0:
return 1
elif ret < 0:
return -1
else:
return 0 def euclidean_distance(node1, node2):
assert len(node1.feature) == len(node2.feature)
sum = 0
for i in xrange(len(node1.feature)):
sum += numpy.square(node1.feature[i] - node2.feature[i])
return numpy.sqrt(sum) class KDTree(object):
# n is num of dimension
def __init__(self, nodes, n):
self.root = self.build_kdtree(nodes, n)
self.n = n def build_kdtree(self, nodes, n):
if len(nodes) == 0:
return None
max_var = 0
index = 0
for i in xrange(n):
features_n = map(lambda node : node.feature[i], nodes)
var = numpy.var(features_n)
if var > max_var:
max_var = var
index = i
sorted_nodes = sorted(nodes, key=lambda node: node.feature[index])
mid = len(sorted_nodes)/2
root = sorted_nodes[mid]
left_nodes = sorted_nodes[:mid]
right_nodes = sorted_nodes[mid+1:] root.ki = index
if len(left_nodes) == 0 and len(right_nodes) == 0:
root.is_leaf = True
root.kd_left = self.build_kdtree(left_nodes, n)
root.kd_right = self.build_kdtree(right_nodes, n)
return root def traverse_kdtree(self, order='in'):
seq = []
self.root.traverse(seq, order)
print map(lambda n : n.name, seq) # return a list of NodeDistance sorded by distance
def kdtree_bbf_knn(self, target, k):
if len(target.feature) != self.n:
return None
knn = []
priority_queue = Queue.LifoQueue()
priority_queue.put(self.root)
while not priority_queue.empty():
expl = priority_queue.get()
while expl:
ki = expl.ki
kv = expl.feature[ki] if expl.name != target.name: # ignore target node itself
# save a maybe result
distance = euclidean_distance(expl, target)
nd = NodeDistance(expl, distance)
assert len(knn) <= k
if len(knn) == k:
if distance < knn[0].distance:
heapq.heapreplace(knn, nd)
else: # len(knn) < k
heapq.heappush(knn, nd) unexpl = None
# find next expl
if target.feature[ki] <= kv: # left
unexpl = expl.kd_right
expl = expl.kd_left
else:
unexpl = expl.kd_left
expl = expl.kd_right # ignore nodes over a long distance bin
if unexpl:
# save a maybe next expl
if len(knn) < k:
priority_queue.put(unexpl)
elif (len(knn) == k) and (abs(kv - target.feature[ki]) < knn[0].distance):
priority_queue.put(unexpl)
ret = []
for i in xrange(len(knn)):
node = heapq.heappop(knn)
ret.insert(0, node)
return ret if __name__ == '__main__':
f1 = [7, 2]
f2 = [5, 4]
f3 = [9, 6]
f4 = [2, 3]
f5 = [4, 7]
f6 = [8, 1]
fx = [2, 4.5]
n1 = KDNode('f1', f1)
n2 = KDNode('f2', f2)
n3 = KDNode('f3', f3)
n4 = KDNode('f4', f4)
n5 = KDNode('f5', f5)
n6 = KDNode('f6', f6)
nx = KDNode('fx', fx) n1_distance = NodeDistance(n4, 1.5)
n2_distance = NodeDistance(n5, 3.2)
n3_distance = NodeDistance(n2, 3.04)
assert n1_distance > n2_distance
assert n1_distance > n3_distance
assert n2_distance < n3_distance tree = KDTree([n1, n2, n3, n4, n5, n6, nx], 2)
tree.traverse_kdtree('in')
knn = tree.kdtree_bbf_knn(nx, 3)
print map(lambda n : (n.kd_node.name, n.distance), knn)

KD Tree算法的更多相关文章

  1. K-D TREE算法原理及实现

    博客转载自:https://leileiluoluo.com/posts/kdtree-algorithm-and-implementation.html k-d tree即k-dimensional ...

  2. 【数据结构与算法】k-d tree算法

    k-d tree算法 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点 ...

  3. k-d tree算法

    k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k ...

  4. Kd Tree算法详解

    kd树(k-dimensional树的简称),是一种分割k维数据空间的数据结构,主要应用于多维空间关键数据的近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nea ...

  5. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  6. K-D Tree题目泛做(CXJ第二轮)

    题目1: BZOJ 2716 题目大意:给出N个二维平面上的点,M个操作,分为插入一个新点和询问到一个点最近点的Manhatan距离是多少. 算法讨论: K-D Tree 裸题,有插入操作. #inc ...

  7. [转载]kd tree

    [本文转自]http://www.cnblogs.com/eyeszjwang/articles/2429382.html k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据 ...

  8. 【学习笔记】K-D tree 区域查询时间复杂度简易证明

    查询算法的流程 如果查询与当前结点的区域无交集,直接跳出. 如果查询将当前结点的区域包含,直接跳出并上传答案. 有交集但不包含,继续递归求解. K-D Tree 如何划分区域 可以借助下文图片理解. ...

  9. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

随机推荐

  1. C#设计模式——策略模式(Strategy Pattern)

    一.概述我们来实现一个企业的工资系统,该企业中不同级别的员工工资算法都不相同,针对该问题,最容易想到的莫过于在代码中堆积一大堆if…else…语句或者是switch…case…语句.如果该企业中不同级 ...

  2. 快捷获取浏览器(navigator对象)的全部属性

    理论:     navigator对象包含关于web浏览器的信息,浏览器的类型,版本信息都可以从该对象获取. 属性 说明 appCodeName 浏览器代码说明 appName 浏览器名称 appVe ...

  3. 交通银行 Java Socket 服务启动 管理 WINDOWS 版

    按照交通银行提供的无界面启动方法试验了很多次,都没有成功,所以自己动手用C# 知识写了一个. 小工具可以判断 交通银行 JAVA SOCKET 服务是否启动,并可以启动/关闭服务 主要代码如下: 判断 ...

  4. sencha 报错问题汇总

    store的url必填 否则报错:Uncaught TypeError: Cannot read property 'indexOf' of undefined ext-all.js store必须在 ...

  5. Verilog学习笔记设计和验证篇(二)...............同步有限状态机

    上图表示的就是数字电路设计中常用的时钟同步状态机的结构.其中共有四个部分产生下一状态的组合逻辑F.状态寄存器组.输出组合逻辑G.流水线输出寄存器组.如果状态寄存器组由n个寄存器组成,就可以记忆2^n个 ...

  6. 【OpenCV】选择ROI区域

    问题描述:在测试目标跟踪算法时,需要选择不同区域作为目标,进行目标跟踪,测试目标跟踪的效果. 解决思路: 1.OpenCV中提供了鼠标交互控制,利用setMouseCallback()给固定的窗口设置 ...

  7. MySQL 数据库 InnoDB 和 MyISAM 数据引擎的差别

    InnoDB和MyISAM是在使用MySQL最常用的两个表类型,各有优缺点,视具体应用而定.基本的差别为:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.MyISAM类型的表强调的是 ...

  8. [Architecture Design] CLK Architecture

    CLK.Prototype.Architecture 最近找数据,看到了博客园在不久之前,办了一个架构分享的活动:.Net项目分层与文件夹结构大全.看完之后觉得获益良多,接着也忍不住手痒,开始整理属于 ...

  9. angularJS中的$apply(),$digest(),$watch()

    $apply()和$digest()在AngularJS中是两个核心概念,但是有时候它们又让人困惑.而为了了解AngularJS的工作方式,首先需要了解$apply()和$digest()是如何工作的 ...

  10. ElasticSearch实战使用

    注意:以下命令都是使用sense测试(ElasticSearch第二步-CRUD之Sense),且数据都已经使用过IK分词. 以下测试数据来源于文档(db_test/person) 需要注意的是下面的 ...