前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现。

目录
1. 普里姆算法介绍
2. 普里姆算法图解
3. 普里姆算法的代码说明
4. 普里姆算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

普里姆算法介绍

普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。

基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

普里姆算法图解

以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
    此时,U={A}。
第2步:将顶点B加入到U中。
    上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
    上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
    上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
    上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
    上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
    上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G

普里姆算法的代码说明

以"邻接矩阵"为例对普里姆算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

public class MatrixUDG {

    private char[] mVexs;       // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值 ...
}

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 普里姆算法

/*
* prim最小生成树
*
* 参数说明:
* start -- 从图中的第start个元素开始,生成最小树
*/
public void prim(int start) {
int num = mVexs.length; // 顶点个数
int index=0; // prim最小树的索引,即prims数组的索引
char[] prims = new char[num]; // prim最小树的结果数组
int[] weights = new int[num]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = mVexs[start]; // 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (int i = 0; i < num; i++ )
weights[i] = mMatrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0; for (int i = 0; i < num; i++) {
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue; int j = 0;
int k = 0;
int min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < num) {
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min) {
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = mVexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < num; j++) {
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && mMatrix[k][j] < weights[j])
weights[j] = mMatrix[k][j];
}
} // 计算最小生成树的权值
int sum = 0;
for (int i = 1; i < index; i++) {
int min = INF;
// 获取prims[i]在mMatrix中的位置
int n = getPosition(prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (int j = 0; j < i; j++) {
int m = getPosition(prims[j]);
if (mMatrix[m][n]<min)
min = mMatrix[m][n];
}
sum += min;
}
// 打印最小生成树
System.out.printf("PRIM(%c)=%d: ", mVexs[start], sum);
for (int i = 0; i < index; i++)
System.out.printf("%c ", prims[i]);
System.out.printf("\n");
}

普里姆算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的普里姆算法源码。

1. 邻接矩阵源码(MatrixUDG.java)

2. 邻接表源码(ListUDG.java)

Prim算法(三)之 Java详解的更多相关文章

  1. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  2. Kruskal算法(三)之 Java详解

    前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...

  3. Dijkstra算法(三)之 Java详解

    http://www.cnblogs.com/skywang12345/p/3711516.html

  4. Prim算法(二)之 C++详解

    本章是普里姆算法的C++实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/sk ...

  5. 拓扑排序(三)之 Java详解

    前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处 ...

  6. 邻接表有向图(三)之 Java详解

    前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...

  7. 邻接矩阵有向图(三)之 Java详解

    前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:h ...

  8. 邻接表无向图(三)之 Java详解

    前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http:/ ...

  9. 邻接矩阵无向图(三)之 Java详解

    前面分别介绍了邻接矩阵无向图的C和C++实现,本文通过Java实现邻接矩阵无向图. 目录 1. 邻接矩阵无向图的介绍 2. 邻接矩阵无向图的代码说明 3. 邻接矩阵无向图的完整源码 转载请注明出处:h ...

随机推荐

  1. switch 的一些事

    switch后面的括号的表达式,其值得 “类型" 应为整数类型(包括字符类型). case后面跟一个常量或者常量表达式,

  2. 00.PHP学习建议

    各位师弟师妹,大家好~PHP不是我们专业的本该有的方向.我不知道大家为什么来学习这门语言,也许是自己了解之后喜欢这门语言(我想这种可能在我们专业是挺少的),也许是听守中哥说这门语言简单好学,为了躲避学 ...

  3. php模拟登陆的两种实现方法分析

    php模拟登陆的实现方法分析 本文实例分析了php模拟登陆的实现方法.分享给大家供大家参考.具体分析如下: php模拟登陆的实现方法,这里分别列举两种方法实现模拟登陆人人网.具体实例代码如下: 1)使 ...

  4. JS继承模式粗探

    之前提到了JS中比较简单的设计模式,在各种设计模式中被最常使用的工具之一就是原型链的继承.作为OOP的特质之一——继承,今天主要谈谈JS中比较简单的继承方法. 最基础的原型链继承在这里就不复述了,主要 ...

  5. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  6. (转)JQuery上传插件Uploadify使用详解

    原文地址:http://www.cnblogs.com/oec2003/archive/2010/01/06/1640027.html Uploadify是JQuery的一个上传插件,实现的效果非常不 ...

  7. minigui编译

    1, libminigui修改单 file: src/kernel/desktop.c func: def_mouse_handler keywords: MSG_DT_RBUTTONUP break ...

  8. 使用UG UISTYLER 窗体编辑器,创建对话框 part 2

    接下来看看自动生成的cs文件里的东西吧,下面是之前保存的窗体的cs文件: 如果仅仅做一些UG开发没有太多的语言基础,那并不需要去了解初始函数内的东西.只需要了解下3类入口函数如何修改和如何应用就可以了 ...

  9. UIAlertController 使用

    iOS 8的新特性之一就是让接口更有适应性.更灵活,因此许多视图控制器的实现方式发生了巨大的变化.全新的UIPresentationController在实现视图控制器间的过渡动画效果和自适应设备尺寸 ...

  10. Python札记 -- 使用easy_install进行模块/包管理

    今天在阅读以前项目代码时,发现里面使用的第三方模块的参数相当诡异,总是对不上.经过分析之后,发现是自己安装的第三方模块跟项目使用的版本不一致.在Python中进行模块/包管理的话,就不得不提到easy ...