IIC vs SPI

现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求制定了这两种标准通信协议。

IIC 开发于1982年,当时是为了给电视机内的CPU和外围芯片提供更简易的互联方式。电视机是最早的嵌入式系统之一,而最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互联微控制器和外围设备的。要实现内存映射,设备必须并联入微控制器的数据线和地址线,这种方式在连接多个外设时需大量线路和额外地址解码芯片,很不方便并且成本高。

为了节省微控制器的引脚和和额外的逻辑芯片,使印刷电路板更简单,成本更低,位于荷兰的Philips实验室开发了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一种只使用二根线接连所有外围芯片的总线协议。最初的标准定义总线速度为100kbps。经历几次修订,主要是1995年的400kbps,1998的3.4Mbps。

有迹象表明,SPI总线首次推出是在1979年,Motorola公司将SPI总线集成在他们第一支改自68000微处理器的微控制器芯片上。SPI总线是微控制器四线的外部总线(相对于内部总线)。与IIC不同,SPI没有明文标准,只是一种事实标准,对通信操作的实现只作一般的抽象描述,芯片厂商与驱动开发者通过data sheets和application notes沟通实现上的细节。

SPI

对于有经验的数字电子工程师来说,用SPI互联两支数字设备是相当直观的。SPI是种四根信号线协议(如图):

§ SCLK: Serial Clock (output from master);

§ MOSI; SIMO: Master Output, Slave Input(output from master);

§ MISO; SOMI: Master Input, Slave Output(output from slave);

§ SS: Slave Select (active low, outputfrom master).

SPI是[单主设备( single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。当SPI主设备想读/写[从设备]时,它首先拉低[从设备]对应的SS线(SS是低电平有效),接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,[主设备]把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”,如下图:

SPI有四种操作模式——模式0、模式1、模式2和模式3,它们的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(就是时钟信号无效时是高还是低)。每种模式由一对参数刻画,它们称为时钟极(clock polarity)CPOL与时钟期(clock phase)CPHA。

[主从设备]必须使用相同的工作参数——SCLK、CPOL 和 CPHA,才能正常工作。如果有多个[从设备],并且它们使用了不同的工作参数,那么[主设备]必须在读写不同[从设备]间重新配置这些参数。以上SPI总线协议的主要内容。SPI不规定最大传输速率,没有地址方案;SPI也没规定通信应答机制,没有规定流控制规则。

事实上,SPI[主设备]甚至并不知道指定的[从设备]是否存在。这些通信控制都得通过SPI协议以外自行实现。例如,要用SPI连接一支[命令-响应控制型]解码芯片,则必须在SPI的基础上实现更高级的通信协议。SPI并不关心物理接口的电气特性,例如信号的标准电压。在最初,大多数SPI应用都是使用间断性时钟脉冲和以字节为单位传输数据的,但现在有很多变种实现了连续性时间脉冲和任意长度的数据帧。

IIC

与SPI的单主设备不同,IIC 是多主设备的总线,IIC没有物理的芯片选择信号线,没有仲裁逻辑电路,只使用两条信号线—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC协议规定:

§ 第一,每一支IIC设备都有一个唯一的七位设备地址;

§ 第二,数据帧大小为8位的字节;

§ 第三,数据(帧)中的某些数据位用于控制通信的开始、停止、方向(读写)和应答机制。

IIC 数据传输速率有标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些变种实现了低速模式(10 kbps)和快速+模式(1 Mbps)。

物理实现上,IIC 总线由两根信号线和一根地线组成。两根信号线都是双向传输的,参考下图。IIC协议标准规定发起通信的设备称为主设备,主设备发起一次通信后,其它设备均为从设备。

IIC 通信过程大概如下。首先,主设备发一个START信号,这个信号就像对所有其它设备喊:请大家注意!然后其它设备开始监听总线以准备接收数据。接着,主设备发送一个7位设备地址加一位的读写操作的数据帧。当所设备接收数据后,比对地址自己是否目标设备。如果比对不符,设备进入等待状态,等待STOP信号的来临;如果比对相符,设备会发送一个应答信号——ACKNOWLEDGE作回应。

当主设备收到应答后便开始传送或接收数据。数据帧大小为8位,尾随一位的应答信号。主设备发送数据,从设备应答;相反主设备接数据,主设备应答。当数据传送完毕,主设备发送一个STOP信号,向其它设备宣告释放总线,其它设备回到初始状态。

基于IIC总线的物理结构,总线上的START和STOP信号必定是唯一的。另外,IIC总线标准规定SDA线的数据转换必须在SCL线的低电平期,在SCL线的高电平期,SDA线的上数据是稳定的。

在物理实现上,SCL线和SDA线都是漏极开路(open-drain),通过上拉电阻外加一个电压源。当把线路接地时,线路为逻辑0,当释放线路,线路空闲时,线路为逻辑1。基于这些特性,IIC设备对总线的操作仅有“把线路接地”——输出逻辑0。

IIC总线设计只使用了两条线,但相当优雅地实现任意数目设备间无缝通信,堪称完美。我们设想一下,如果有两支设备同时向SCL线和SDA线发送信息会出现什么情况。

基于IIC总线的设计,线路上不可能出现电平冲突现象。如果一支设备发送逻辑0,其它发送逻辑1,那么线路看到的只有逻辑0。也就是说,如果出现电平冲突,发送逻辑0的始终是“赢家”

总线的物理结构亦允许主设备在往总线写数据的同时读取数据。这样,任何设备都可以检测冲突的发生。当两支主设备竞争总线的时候,“赢家”并不知道竞争的发生,只有“输家”发现了冲突——当它写一个逻辑1,却读到0时——而退出竞争。

10位设备地址

任何IIC设备都有一个7位地址,理论上,现实中只能有127种不同的IIC设备。实际上,已有IIC的设备种类远远多于这个限制,在一条总线上出现相同的地址的IIC设备的概率相当高。为了突破这个限制,很多设备使用了双重地址——7位地址加引脚地址(external configuration pins)。IIC 标准也预知了这种限制,提出10位的地址方案。

10位的地址方案对 IIC协议的影响有两点:

§ 第一,地址帧为两个字节长,原来的是一个字节;

§ 第二,第一个字节前五位最高有效位用作10位地址标识,约定是“11110”。

除了10位地址标识,标准还预留了一些地址码用作其它用途,如下表:

时钟拉伸

在 IIC 通信中,主设备决定了时钟速度。因为时钟脉冲信号是由主设备显式发出的。但是,当从设备没办法跟上主设备的速度时,从设备需要一种机制来请求主设备慢一点。这种机制称为时钟拉伸,而基于I²C结构的特殊性,这种机制得到实现。当从设备需要降低传输的速度的时候,它可以按下时钟线,逼迫主设备进入等待状态,直到从设备释放时钟线,通信才继续。

高速模式

原理上讲,使用上拉电阻来设置逻辑1会限制总线的最大传输速度。而速度是限制总线应用的因素之一。这也说明为什么要引入高速模式(3.4 Mbps)。在发起一次高速模式传输前,主设备必须先在低速的模式下(例如快速模式)发出特定的“High Speed Master”信号。为缩短信号的周期和提高总线速度,高速模式必须使用额外的I/O缓冲区。另外,总线仲裁在高速模式下可屏蔽掉。更多的信息请参与总线标准文档。

IIC vs SPI: 哪位是赢家?

我们来对比一下IIC 和 SPI的一些关键点:

第一,总线拓扑结构/信号路由/硬件资源耗费

IIC 只需两根信号线,而标准SPI至少四根信号,如果有多个从设备,信号需要更多。一些SPI变种虽然只使用三根线——SCLK, SS和双向的MISO/MOSI,但SS线还是要和从设备一对一根。另外,如果SPI要实现多主设备结构,总线系统需额外的逻辑和线路。用IIC 构建系统总线唯一的问题是有限的7位地址空间,但这个问题新标准已经解决——使用10位地址。从第一点上看,IIC是明显的大赢家。

第二,数据吞吐/传输速度

如果应用中必须使用高速数据传输,那么SPI是必然的选择。因为SPI是全双工,IIC 的不是。SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式还需要额外的I/O缓冲区,还并不是总是容易实现的。

第三,优雅性

IIC 常被称更优雅于SPI。公正的说,我们更倾向于认为两者同等优雅和健壮。IIC的优雅在于它的特色——用很轻盈的架构实现了多主设备仲裁和设备路由。但是对使用的工程师来讲,理解总线结构更费劲,而且总线的性能不高。

SPI的优点在于它的结构相当的直观简单,容易实现,并且有很好扩展性。SPI的简单性不足称其优雅,因为要用SPI搭建一个有用的通信平台,还需要在SPI之上构建特定的通信协议软件。也就是说要想获得SPI特有而IIC没有的特性——高速性能,工程师们需要付出更多的劳动。另外,这种自定的工作是完全自由的,这也说明为什么SPI没有官方标准。IIC和SPI都对低速设备通信提供了很好的支持,不过,SPI适合数据流应用,而IIC更适合“字节设备”的多主设备应用。

小结

在数字通信协议簇中,IIC和SPI常称为“小”协议,相对Ethernet, USB, SATA, PCI-Express等传输速度达数百上千兆字节每秒的总线。但是,我们不能忘记的是各种总线的用途是什么。“大”协议是用于系统外的整个系统之间通信的,“小”协议是用于系统内各芯片间的通信,没有迹象表明“大”协议有必要取代“小”协议。IIC和SPI的存在和流行体现了“够用就好”的哲学。回应文首,IIC和SPI如此的流行,它是任何一位嵌入式工程师必备的工具。

[SPI&I2C]I2C和SPI协议介绍的更多相关文章

  1. SPI、I2C、UART三种串行总线协议的区别和SPI接口介绍(转)

    SPI.I2C.UART三种串行总线协议的区别 第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART( ...

  2. SPI、I2C、UART三种串行总线协议的区别

    第一个区别当然是名字: SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS) UART(Universal Asynchronous R ...

  3. 驱动之SPI,UART,I2C的介绍与应用20170118

    这篇文章主要介绍基本的驱动也是用的最多的协议类驱动中的SPI,I2C和UART.首先从最简单的UART也就是串口讲起: 1.UART UART由两根线也就是TX,RX以及波特率产生器组成,操作比较简单 ...

  4. ADXL345经验总结,采用SPI和I2C总线操作

    一. ADXL345简介       ADXL345是ADI公司推出的三轴(x,y,z)iMEMS数字加速度计(digital accelerometer),具有在16G下高分辨率(13Bit)测量能 ...

  5. Uart、SPI和I2C的区别

    串口通信:UART.SPI.I2C区别[引用]   1.UART就是两线,一根发送一根接收,可以全双工通信,线数也比较少.数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快.在多机通信上面 ...

  6. SPI,UART,I2C都有什么区别,及其各自的特点

    区别: SPI:高速同步串行口.3-4线接口,收发独立.可同步进行 UART:通用异步串行口.按照标准波特率完成双向通讯,速度慢 I2C:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线 ...

  7. SPI、I2C、UART(转)

    UART与USART(转) UART需要固定的波特率,就是说两位数据的间隔要相等. UART总线是异步串口,一般由波特率产生器(产生的波特率等于传输波特率的16倍).UART接收器.UART发送器组成 ...

  8. UART、SPI和I2C详解

    做单片机开发时UART,SPI和I2C都是我们最经常使用到的硬件接口,我收集了相关的具体材料对这三种接口进行了详细的解释. UART UART是一种通用串行数据总线,用于异步通信.该总线双向通信,可以 ...

  9. SPI、I2C、UART、I2S、GPIO、SDIO、CAN 简介

    转自http://sanwen.net/a/fmxnjoo.html SPI.I2C.UART.I2S.GPIO.SDIO.CAN,看这篇就够了 总线 总线,总要陷进里面.这世界上的信号都一样,但是总 ...

  10. SPI、I2C、UART、I2S、GPIO、SDIO、CAN

    总线,总线,总要陷进里面.这世界上的信号都一样,但是总线却成千上万,让人头疼. 总的来说,总线有三种:内部总线.系统总线和外部总线.内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连: ...

随机推荐

  1. 初接触BurpLoader工具

    初接触burp工具 菜鸟一枚,现在在接触一段时间测试,我在测试功能性的时候,想着网站被黑案例那么多,我是不是也应该弄弄安全性测试了,所以就有了下边的第一次接触BurpLoader工具来测试手机的app ...

  2. Object.prototype 与 Function.prototype 与 instanceof 运算符

    方法: hasOwnProperty isPrototypeOf propertyIsEnumerable hasOwnProperty 该方法用来判断一个对象中的某一个属性是否是自己提供的( 住要用 ...

  3. MVC+UnitOfWork+Repository+EF 之我见

    UnitOfWork+Repository模式简介: 每次提交数据库都会打开一个连接,造成结果是:多个连接无法共用一个数据库级别的事务,也就无法保证数据的原子性.一致性.解决办法是:在Reposito ...

  4. Python::re 模块 -- 在Python中使用正则表达式

    前言 这篇文章,并不是对正则表达式的介绍,而是对Python中如何结合re模块使用正则表达式的介绍.文章的侧重点是如何使用re模块在Python语言中使用正则表达式,对于Python表达式的语法和详细 ...

  5. JUCE 界面库显示中文乱码问题

    JUCE 界面库显示中文乱码问题 环境: Windows7 64位 旗舰版 Visual Studio Ultimate 2012 JUCE 4.1 问题描述: 直接使用juce::String存储中 ...

  6. javascript onblur事件阻塞选中input框

    先上问题实例: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <t ...

  7. 使用第三方框架vapor和swift 搭建本地服务器

    在网上看到一篇教程,使用vapor搭建服务端,自己记录下来备忘本文主要记录以下几点 1.配置好Vapor 2.用Swift写GET,POST方法,返回JSON数据 3.配置本地服务器,编译运行在浏览器 ...

  8. dotproject 2.1.8 甘特图中文乱码解决

    1.安装中文语言包 下载地址为http://www.dotproject.net/dpDownloads/Language_Packs/Chinese_Simplified_(GBK)/dotproj ...

  9. 给自己~~微语&&歌单

    如果你很忙,除了你真的很重要以外,更可能的原因是:你很弱,你没有什么更好的事情去做,你生活太差不得不努力来弥补,或者你装作很忙,让自己显得很重要.——史蒂夫-乔布斯 时间并不会因为你的迷茫和迟疑而停留 ...

  10. Surprise团队第三周项目总结

    Surprise团队第二周项目总结 项目进展 这周我们小组的项目在上周的基础上进行了补充,主要注重在注册登录界面的实现,以及关于数据库的一些学习. 在设计注册登录界面时,每一块的地方控件都不一样,比如 ...