MATLAB中FFT的使用方法

说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编

一.调用方法

X=FFT(x);
X=FFT(x,N);
x=IFFT(X);
x=IFFT(X,N)

用MATLAB进行谱分析时注意:

(1)函数FFT返回值的数据结构具有对称性。

例:
N=8;
n=0:N-1;
xn=[4 3 2 6 7 8 9 0];
Xk=fft(xn)


Xk =

39.0000           -10.7782 + 6.2929i        0 - 5.0000i   4.7782 - 7.7071i   5.0000             4.7782 + 7.7071i        0 + 5.0000i -10.7782 - 6.2929i

Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例

例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;
fs=100;N=128;   %采样频率和数据点数
n=0:N-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);    %对信号进行快速Fourier变换
mag=abs(y);     %求得Fourier变换后的振幅
f=n*fs/N;    %频率序列
subplot(2,2,1),plot(f,mag);   %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
%对信号采样数据为1024点的处理
fs=100;N=1024;n=0:N-1;t=n/fs;
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);   %对信号进行快速Fourier变换
mag=abs(y);   %求取Fourier变换的振幅
f=n*fs/N;
subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
subplot(2,2,4)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;

运行结果:

fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:
(1)数据个数N=32,FFT所用的采样点数NFFT=32;
(2)N=32,NFFT=128;
(3)N=136,NFFT=128;
(4)N=136,NFFT=512。

clf;fs=100; %采样频率
Ndata=32; %数据长度
N=32; %FFT的数据长度
n=0:Ndata-1;t=n/fs;   %数据对应的时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);   %时间域信号
y=fft(x,N);   %信号的Fourier变换
mag=abs(y);    %求取振幅
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=32');grid on;

Ndata=32;   %数据个数
N=128;     %FFT采用的数据长度
n=0:Ndata-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=128');grid on;

Ndata=136;   %数据个数
N=128;     %FFT采用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=128');grid on;

Ndata=136;    %数据个数
N=512;    %FFT所用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=512');grid on;

结论:
(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。
(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。
(3)FFT程序将数据截断,这时分辨率较高。
(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)

(1)数据点过少,几乎无法看出有关信号频谱的详细信息;
(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。
(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。
        可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。

MATLAB中FFT的使用方法的更多相关文章

  1. [转载]MATLAB中FFT的使用方法

    http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/ 说明:以下资源来源于<数字信号处理的MATLAB实现&g ...

  2. MATLAB中fft函数的正确使用方法

    问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...

  3. [转载]Matlab中fft与fftshift命令的小结与分析

    http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...

  4. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  5. matlab 中fft的用法

    一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N- ...

  6. paper 3:matlab中save,load使用方法小结

    功能描述]存储文件[软件界面]MATLAB->File->Save Workspace As将变量存入硬盘中指定路径.[函数用法] save:该函数将所有workspace中变量用二进制格 ...

  7. matlab中prod的使用方法

    B = prod(A) 将A矩阵不同维的元素的乘积返回到矩阵B. 如果A是向量,prod(A)返回A向量的乘积.如果A是矩阵,prod(A)返回A每一列元素的乘积并组成一个行向量B. B = prod ...

  8. 2015.06.11,技术,关于Matlab中的Jbtest检验

    总体分布的正态性检验一般采取Jarque-Bera检验方法. 1. JBTest检验的定义: 在统计学中,Jarque-Bera检验是对样本数据是否具有符合正态分布的偏度和峰度的拟合优度的检验.该检验 ...

  9. Matlab中函数定义方法

    Matlab自定义函数的六种方法 n1.函数文件+调用函数(命令)文件:需单独定义一个自定义函数的M文件: n2.函数文件+子函数:定义一个具有多个自定义函数的M文件: n3.Inline:无需M文件 ...

随机推荐

  1. 我的Markdown笔记

    一片简单的Markdown笔记,共8项,基本上满足Markdown文档的编写(表格不建议用Markdown),每项上半部分是源码,下半部分是效果图片. 标题 段落 列表 强调 分割线 代码 连接 图片 ...

  2. Mysql 5.7.12 配置

    打算用express+mysql写一个博客.本来在公司电脑已经配置好了的,但是为了方便在家里也能修改,所以在自己的电脑里也安装好环境. 公司电脑是win7系统32位的,安装的是5.5的mysql,用的 ...

  3. “static”引发的一个错误

    昨天晚上,舍友发来一个程序,先把代码贴上:  #include<stdio.h>#define N 20short bufferA[N]={1,2,3,4,5,6,7,8,9,10,11, ...

  4. 学习UFT11.5历程(一)

    博主三年来测试都是功能测试 看了虫师的文章,感觉是要学点东西.所以,听从虫师的话,不被眼花瞭乱的测试技术打扰,先学习UFT,再学习python. 再不学习感觉要被淘汰了...... 也不想有谈工资的时 ...

  5. OO的五大原则是指SRP、OCP、LSP、DIP、ISP。

    OO的高层原则,面向对象设计的基本原则 设计模式之六大原则--开闭原则(OCP) 设计模式之六大原则--迪米特法则(LoD,LKP) 设计模式之六大原则--接口隔离原则(ISP) 设计模式之六大原则- ...

  6. javascript中的事件冒泡、事件捕获和事件执行顺序

    谈起JavaScript的 事件,事件冒泡.事件捕获.阻止默认事件这三个话题,无论是面试还是在平时的工作中,都很难避免. DOM事件标准定义了两种事件流,这两种事件流有着显著的不同并且可能对你的应用有 ...

  7. CentOS 配置防火墙操作实例(启、停、开、闭端口):

    CentOS 配置防火墙操作实例(启.停.开.闭端口): 注:防火墙的基本操作命令: 查询防火墙状态: [root@localhost ~]# service   iptables status< ...

  8. conflict between "Chinese_PRC_CI_AI" and "Chinese_PRC_CI_AS" in the equal to operation

    在SQL SERVICE做关联查询的时候遇到了"conflict between "Chinese_PRC_CI_AI" and "Chinese_PRC_CI ...

  9. 报错记录:getOutputStream() has already been called for this response

    仅作记录:参考文章:http://www.blogjava.net/vickzhu/archive/2008/11/03/238337.html 报错信息: java.lang.IllegalStat ...

  10. python——django入门篇

    要做一只有自学能力的pythoner,尽管大多数自学都是野生并不规范的,会遇到诸多坑,最后用稀奇古怪的方法解决了,但是先了解一些为以后真正学习道路填坑方便了简直不只一点点...重点来了:感觉以班里同学 ...