运用tensorflow写的第一个神经网络
因为实训课要用LSTM+attention机制在钢材领域做一个关系抽取。作为仅仅只学过一点深度学习网络的小白在b站上学习了RNN,LSTM的一些理论知识。
但只懂得一些理论知识是无法完成关系抽取的任务的。于是从图书馆借来《tensoflow实战-----深度学习框架》,在此开始记录我的tensorflow神经网络编程!
首先先介绍一下tensorflow的运作机制,对一个具体的计算而言,一般可以分为两个阶段,第一个阶段用来定义计算图中的计算,第二个阶段用来执行计算。
有了这个概念之后,就会发现这一操作能很好的将框架定义部分,和模型训练部分很好的分开,以下是第一次实验的代码:一个简单的分类问题,一个2,3,1(三层,每一层的节点数)的神经网络。
import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1))//随机初始化权重,第二个参数为为标准差
w2 = tf.Variable(tf.random_normal((3, 1), stddev=1, seed=1))//随机初始化权重 x = tf.placeholder(tf.float32, shape=(None, 2), name="x_input")//placeholder一般用来在训练时存放输入数据,因为如果定义成常量的话,所消耗的空间太大
y_=tf.placeholder(tf.float32, shape=(None, 1), name="y_input")//参数介绍,需要定义类型和维度,None的意思是,不知道有几组训练数
biases1 = tf.Variable(tf.random_normal((1,3),stddev=1))//定义偏置,其实所谓偏置就是截距的概念
biases2 = tf.Variable(tf.random_normal((1,1),stddev=1))
#a = tf.matmul(x, w1)+biases1
//以下是实现前向传播
a = tf.sigmoid(tf.matmul(x, w1)+biases1)//用sigmoid函数充当激活函数,用来去线性化
y = tf.matmul(a, w2)+biases2
y = tf.sigmoid(y)
#损失函数选用交叉熵函数
cross_entropy = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y, 1e-10, 1.0))+(1-y)*tf.log(tf.clip_by_value(1-y, 1e-10, 1.0)))
#选择优化方法(即更新权重所用的反向传播的方法,这个adam法还不知道啥意思,目前只知道梯度下降)
train_step = tf.train.AdamOptimizer(0, 0.001).minimize(cross_entropy) #生成随机数据集
rdm = RandomState(1)#随机因子为1
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+x2<1)] for (x1, x2) in X]
//生成会话开始训练模型,即前面所提到的执行计算的阶段
with tf.Session() as sess:
//tensorflow中所有张量都要初始化
initall = tf.global_variables_initializer()
sess.run(initall)
#print(sess.run(biases1))
print(sess.run(w1))
print(sess.run(w2))
//训练集中抽取一小个部分叫一个batch,训练过程是一个batch一个batch训练的
steps = 5000
for i in range(steps):
start = (i*batch_size)%dataset_size
end = min(start+batch_size, dataset_size)
sess.run(train_step, feed_dict={x:X[start:end],y_:Y[start:end]})
//每训练1000次查看一下训练结果,即交叉熵函数的值,越小越好
if(i%1000==0):
total_cross=sess.run(cross_entropy, feed_dict={x:X, y_:Y})
print(i," ",total_cross)
//最后查看一下最后更新的权重
print(sess.run(w1))
print(sess.run(w2)) 第一次写博客,也是初学,有问题请大家指出哈。
运用tensorflow写的第一个神经网络的更多相关文章
- 2 TensorFlow入门笔记之建造神经网络并将结果可视化
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- AI - TensorFlow - 第一个神经网络(First Neural Network)
Hello world # coding=utf-8 import tensorflow as tf import os os.environ[' try: tf.contrib.eager.enab ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- 手写数字识别 卷积神经网络 Pytorch框架实现
MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...
- 万事开头难,用HTML写的第一个界面,收获颇多
很开心跟了叶老师学习和做项目,基础不好,前期他会帮你安排好学习路线和计划.前期没有项目做,叶老师先让我先学习jQuery,给我推荐了一些网站,叫我一边学习,一边写博客.其实很早就有想写博客的想 ...
- TensorFlow 深度学习笔记 卷积神经网络
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...
- TensorFlow实现与优化深度神经网络
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...
- Python初学者随笔(一)_ 用Python写的第一个游戏“猜数字”
如标题所写,这篇随笔主要记录下学习Python过程中用Python写的第一个游戏--"猜数字"_跟着"小甲鱼"学Python,链接: https://b23.t ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
随机推荐
- Asp.net Core3.0 跨域配置
原文:http://www.zilaohu.cn/Jie/Detail_Jie?ID=78840a04-55b8-4988-80b2-f964fd822d63 下面配置后:被拒绝的域请求后,可以进入方 ...
- tf读取图片,matplotlib可视化
代码: """ 使用tf读取图片 """ import tensorflow as tf import matplotlib.pyplot ...
- 在linux环境下重启oracle数据库,解决密码过期的问题
(1) 以oracle身份登录数据库,命令:su – oracle (2) 进入Sqlplus控制台,命令:sqlplus /nolog (3) 以系统管理员登录,命令:connect /as sys ...
- LeetCode刷题191124
博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给出一个无重叠的 ,按照区间起始端点排序的区间列表. 在列表中插 ...
- MySQL5.7脚本自动安装
脚本里面没有把同步时间写进去,这个写在最前面yum install -y ntp ntpdatecp -f /usr/share/zoneinfo/Asia/Shanghai /etc/localti ...
- 痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(2)- Boot配置(BOOT Pin/eFUSE)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RTyyyy系列MCU的Boot配置. 在上一篇文章 Boot简介 里痞子衡为大家介绍了Boot基本原理以及i.MXR ...
- JAVA开发几个常用快捷键
- MATLAB实例:新建文件夹,保存.mat文件并保存数据到.txt文件中
MATLAB实例:新建文件夹,保存.mat文件并保存数据到.txt文件中 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 用MATLAB实现:指定路径下 ...
- JS数组去除空值
/** * 扩展Array方法, 去除数组中空白数据 */ Array.prototype.notempty = function() { var arr = []; this.map(functio ...
- Oracle 11gR2中HR用户安装说明
1.脚本下载: 链接: 1,脚本放在这个目录下$ORACLE_HOME/demo/schema/human_resources hr_analz.sql hr_code.sq ...