Python程序中的线程操作-锁
一、同步锁
1.1 多个线程抢占资源的情况
from threading import Thread
import os,time
def work():
global n
temp=n
time.sleep(0.1)
n=temp-1
if __name__ == '__main__':
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join()
print(n) #结果可能为99
1.1.1 对公共数据的操作
import threading
R=threading.Lock()
R.acquire()
'''
对公共数据的操作
'''
R.release()
1.2 同步锁的引用
from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release()
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join()
print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全
1.3 互斥锁与join的区别
#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import os,time
def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1
if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
'''
#不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
from threading import current_thread,Thread,Lock
import os,time
def task():
#未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
#加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release()
if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
'''
# 有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
# 没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
# start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
# 单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
from threading import current_thread,Thread,Lock
import os,time
def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1
if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''
)
二、死锁与递归锁
进程也有死锁与递归锁,在进程那里忘记说了,放到这里一起说了。
所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
2.1 死锁
from threading import Lock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()
解决方法:递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁。
2.2 递归锁RLock
from threading import RLock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()
三、典型问题:科学家吃面
3.1 死锁问题
import time
from threading import Thread,Lock
noodle_lock = Lock()
fork_lock = Lock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release()
def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release()
for name in ['哪吒','nick','tank']:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start()
3.2 递归锁解决死锁问题
import time
from threading import Thread,RLock
fork_lock = noodle_lock = RLock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release()
def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release()
for name in ['哪吒','nick','tank']:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start()
Python程序中的线程操作-锁的更多相关文章
- Python程序中的线程操作(线程池)-concurrent模块
目录 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecut ...
- 30、Python程序中的线程操作(oncurrent模块)
进程是cpu资源分配的最小单元,一个进程中可以有多个线程. 线程是cpu计算的最小单元. 对于Python来说他的进程和线程和其他语言有差异,是有GIL锁. GIL锁 GIL锁保证一个进程中同一时刻只 ...
- Python程序中的线程操作-创建多线程
目录 一.python线程模块的选择 二.threading模块 三.通过threading.Thread类创建线程 3.1 创建线程的方式一 3.2 创建线程的方式二 四.多线程与多进程 4.1 p ...
- Python程序中的线程操作-concurrent模块
目录 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecutor 五.ThreadPoolExecutor 六.map的用法 ...
- Python程序中的线程操作-守护线程
目录 一.守护线程 1.1 详细解释 1.2 守护线程例1 1.3 守护线程例2 一.守护线程 无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁.需要强调的是:运行完毕并非终止运行. ...
- Python程序中的线程操作-线程队列
目录 一.线程队列 二.先进先出 三.后进先出 四.存储数据时可设置优先级的队列 4.1 优先级队列 4.2 更多方法说明 一.线程队列 queue队列:使用import queue,用法与进程Que ...
- 在Python程序中的进程操作,multiprocess.Process模块
在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...
- python 全栈开发,Day38(在python程序中的进程操作,multiprocess.Process模块)
昨日内容回顾 操作系统纸带打孔计算机批处理 —— 磁带 联机 脱机多道操作系统 —— 极大的提高了CPU的利用率 在计算机中 可以有超过一个进程 进程遇到IO的时候 切换给另外的进程使用CPU 数据隔 ...
- Python程序中的进程操作--—--开启多进程
Python程序中的进程操作-----开启多进程 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创 ...
随机推荐
- 【Objective-C】探索Category底层的实质
无论一个类设计的多么完美,在未来的需求演进中,都有可能会碰到一些无法预测的情况.那怎么扩展已有的类呢?一般而言,继承和组合是不错的选择.但是在Objective-C 2.0中,又提供了category ...
- tensorflow 性能调优相关
如何进行优化tensorflow 将极大得加速机器学习模型的训练的时间,下面是一下tensorflow性能调优相关的阅读链接: tensorflow 性能调优:http://d0evi1.com/te ...
- 推荐系统| ① Movies概述
数据生命周期 项目系统架构 用户可视化:主要负责实现和用户的交互以及业务数据的展示,主体采用AngularJS2进行实现,部署在Apache服务上. 综合业务服务:主要实现JavaEE层面 ...
- Charles 使用笔记
一.介绍 Charles 属于抓包软件. Charles 多平台支持,mac.windows.linux. Charles 是收费软件,可以免费试用 30 天.试用期过后,未付费的用户仍然可以继续使 ...
- 利用Python进行数据分析-Pandas(第七部分-时间序列)
时间序列(time series)数据是一种重要的结构化数据形式,应用于多个领域,包括金融学.经济学.生态学.神经科学.物理学等.时间序列数据的意义取决于具体的应用场景,主要有以下几种: 时间戳(ti ...
- 【朝花夕拾】Android性能篇之(八)来自官网的自白
前言 转载请声明,转自[https://www.cnblogs.com/andy-songwei/p/10823372.html],谢谢! Android性能优化无疑是Android中的一个重点,也是 ...
- Java入门系列之StringBuilder、StringBuffer(三)
前言 上一节我们讲解了字符串的特性,除了字符串类外,还有两个我们也会经常用到的类,那就是StringBuffer和StringBuilder.因为字符串不可变,所以我们每次对字符串的修改比如通过连接c ...
- java高并发系列【共34篇,强力建议观看】
第1天:必须知道的几个概念 第2天:并发级别 第3天:有关并行的两个重要定律 第4天:JMM相关的一些概念 第5天:深入理解进程和线程 第6天:线程的基本操作 第7天:volatile与Java内存模 ...
- Java生鲜电商平台-商城系统库存问题分析以及产品设计对逻辑/物理删除思考
Java生鲜电商平台-商城系统库存问题分析以及产品设计对逻辑/物理删除思考 说明:在生鲜电商的库存设计,是后台的重点,也是难点,关乎商品是否存在超卖.商品的库存增加方式倒不难,直接在后台添加即可,而扣 ...
- SSM框架之SpringMVC(2)参数绑定及自定义类型转换
SpringMVC(2)参数绑定及自定义类型转换 1.请求参数的绑定 1.1. 请求参数的绑定说明 1.1.1.绑定机制 表单提交的数据都是k=v格式的 username=haha&passw ...