算法部分不再细讲,之前发过很多:

【算法系列】决策树

决策树(Decision Tree)ID3算法

决策树(Decision Tree)C4.5算法

决策树(Decision Tree)CART算法

ID3、C4.5、CART三种决策树的区别

实验:

导入需要用到的python库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

导入数据集

dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

将数据集拆分为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

特征缩放

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

对测试集进行决策树分类拟合

from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)

预测测试集的结果

y_pred = classifier.predict(X_test)

制作混淆矩阵

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

将训练集结果进行可视化

from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

将测试集结果进行可视化

from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

100天搞定机器学习|Day23-25 决策树及Python实现的更多相关文章

  1. 100天搞定机器学习|Day33-34 随机森林

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  2. 100天搞定机器学习|Day7 K-NN

    最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...

  3. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day35 深度学习之神经网络的结构

    100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习 ...

  5. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  6. 100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)

    本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随 ...

  7. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  8. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  9. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  10. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. bzoj1854 游戏题解(二分图/并查集)

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 5547  Solved: 2229[Submit][Status] ...

  2. LINUX_记录(一)

    我有了一台电脑,有好多的硬件,CPU啊.内存啊.光驱啊.硬盘啊等等,我不想装windows,我想装linux,我就装了一个linux.事实上,可以跑,没问题,我在思考,why? 我装的linux,包括 ...

  3. 为什么说是时候拥抱.NET CORE了?

    微软和社区已经做了大量艰苦的工作,使.Net Core成为市场上具有竞争力的框架,帮助开发人员快速开发具有最佳性能和可扩展性的强大应用程序.做的最棒的事情是.Net Framework开发人员不需要任 ...

  4. 比赛:小奔的方案 solution

    题目 题目背景 有一个著名的题目: 五个海盗抢到了100个金币,每一颗都一样的大小和价值连城. 他们决定这么分: 1.抽签决定自己的号码 ------ [1.2.3.4.5] 2.首先,由1号提出分配 ...

  5. HTTPS协议学习笔记

    在前一段时间准备面试的时候,面试官反复提到了HTTPS这个协议.我只是单纯的知道,HTTPS是安全的应用层协议 是HTTP更安全的版本,通过对称密钥加密.但是具体的其他的,可能我不太了解.今天就专门抽 ...

  6. 个人永久性免费-Excel催化剂功能第54波-批量图片导出,调整大小等

    图片作为一种数据存在,较一般的存放在Excel单元格或其他形式存在的文本数据,对其管理更为不易,特别是仅有Excel原生的简单的插入图片功能时,Excel催化剂已全面覆盖图片数据的使用场景,无论是图片 ...

  7. Excel催化剂开源第2波-自动检测Excel的位数选择对应位数的xll文件安装

    Excel插件的部署问题难倒了不了的用户,特别是VSTO的部署,用ExcelDna开发的xll文件部署方便,不挑用户机器环境,是其开发Excel插件的一大优势. 其开发出来的xll文件,最终还是需要考 ...

  8. springboot序

    springboot序 1.写在前面 (1) 前段时间把文章分了下类(说的是专栏,谈不上),分了三类:springboot.springcloud.mpp数据库greenplum,后来给springc ...

  9. sql format 格式化数字(前面补0)

    将一个数字例如33,或1使用t-sql语句转换成033或001 以下是详细分析: 1.select power(10,3)得到1000 2.select cast(1000+33 as varchar ...

  10. IT技术人员的自我修养

    1. 前言        在IT领域摸爬滚打多年,从一个普通程序员到技术主管,到技术经理,再到技术总监,踩过不少坑.加过不少班,也背过不少锅,在提升自身技术能力与管理能力的同时,也一直在思考,作为IT ...