100天搞定机器学习|Day23-25 决策树及Python实现

算法部分不再细讲,之前发过很多:
实验:
导入需要用到的python库
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
导入数据集
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
将数据集拆分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
特征缩放
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
对测试集进行决策树分类拟合
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
预测测试集的结果
y_pred = classifier.predict(X_test)
制作混淆矩阵
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
将训练集结果进行可视化
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
将测试集结果进行可视化
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

100天搞定机器学习|Day23-25 决策树及Python实现的更多相关文章
- 100天搞定机器学习|Day33-34 随机森林
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day7 K-NN
最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...
- 100天搞定机器学习|Day11 实现KNN
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day35 深度学习之神经网络的结构
100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习 ...
- 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
- 100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随 ...
- 100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day9-12 支持向量机
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day16 通过内核技巧实现SVM
前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
随机推荐
- C++学习书籍推荐《More Exceptional C++(英文)》下载
百度云及其他网盘下载地址:点我 作者简介 Herb Sutter is the author of three highly acclaimed books, Exceptional C++ Styl ...
- C语言学习书籍推荐《C陷阱与缺陷》下载
下载地址:点我 凯尼格 (作者), 高巍 (译者) <C和C++经典著作:C陷阱与缺陷>适合有一定经验的C程序员阅读学习,即便你是C编程高手,<C和C++经典著作:C陷阱与缺陷> ...
- Ubuntu系统 apt-get update失败解决办法
使用apt-get的时候发现ubuntu和阿里云均已经不提供该版本的源,所以需要找到其他的替代源. 使用的ubuntu版本是14.10,属于非LTS(长期支持版本),因此前一段时间还可以使用apt-g ...
- Apache Dubbo已不再局限于Java语言
2017 年 9 月 7 日,在沉寂了4年之后,Dubbo 悄悄的在 GitHub 发布了 2.5.4 版本.随后又迅速发布了 2.5.5.2.5.6.2.5.7 等release.在 2017年 1 ...
- leetcode的Hot100系列--3. 无重复字符的最长子串--滑动窗口
可以先想下这两个问题: 1.怎样使用滑动窗口? 2.如何快速的解决字符查重问题? 滑动窗口 可以想象一下有两个指针,一个叫begin,一个叫now 这两个指针就指定了当前正在比较无重复的字符串,当再往 ...
- ~~在python中踩过的坑以及问题~~(不断更新)
python说简单也不难,但是在这其中大大小小的点 真的是有够折磨人欸! 1. input 输入的时候,即使输入的是数字,数据类型也是字符串 2. 字符串本质上来看可以看作有序数组 3 ...
- ASP.NET Core MVC 之模型(Model)
1.模型绑定 ASP.NET Core MVC 中的模型绑定将数据从HTTP请求映射到操作方法参数.参数既可以是简单类型,也可以是复杂类型.MVC 通过抽象绑定解决了这个问题. 2.使用模型绑定 当 ...
- grep -nr "Base64Decode" * 查找含有某字符的文件
grep -nr "Base64Decode" * 查找含有某字符的文件
- C#窗体实现打开关闭VM虚拟机
vixclass.cs//定义开机.关机等函数 using System; using System.Collections.Generic; using System.Linq; using Sys ...
- [leetcode] #279 Perfect Squares (medium)
原题链接 题意: 给一个非整数,算出其最少可以由几个完全平方数组成(1,4,9,16……) 思路: 可以得到一个状态转移方程 dp[i] = min(dp[i], dp[i - j * j] + ) ...