每次问NC做多项式的题需要什么知识点。

各种数。

各种反演。

多项式全家桶。

然后我就一个一个地学知识点。然而还差好多,学到后面的前面的已经忘了(可能是我太菜吧不是谁都是NC啊)

然后发现每个知识点基本只做一道题,肯定会忘,所以再归纳一下。

不附证明只写结论以便查阅,如果需要证明还是自行百度。

第一类斯特林数

  • 含义:$\left[ ^k_n \right]$表示讲n个元素划分为k个环的方案数。
  • 递推公式:$\left[ ^k_n \right] = \left[ ^k_{n-1} \right] \times (n-1)+ \left[ ^{k-1}_{n-1} \right]$
  • 求一行:$\left[ ^k_n \right]$是多项式$f_n(x) = \prod\limits_{i=0}^{n-1} (x+i)$的k次项系数。这个多项式乘法可以进行分治递归求解,复杂度$O(nlog^2n)$。存在$O(nlogn)$的做法,比较复杂,贴一个链接
  • 应用:$x^{\overline{n}}=\sum\limits_{k=0}^{n} \left[ ^k_n \right] x^k$。比较少见。

第二类斯特林数

  • 含义:$\left\{ ^k_n \right\}$表示讲n个元素划分为k个集合的方案数。
  • 递推公式:$\left\{ ^k_n \right\} =\left\{ ^k_{n-1} \right\} \times k+ \left\{ ^{k-1}_{n-1} \right\}$
  • 求单点/一行:$\left \{ ^n_k \right \}=\sum\limits_{i=0}^{k} \frac{(-1)^{k-i} \times i^n}{(k-i)! \times i!}$。单点直接$O(n)$枚举,一行的话NTT算卷积。
  • 应用:$x^n=\sum\limits_{i=0}^{n} \left \{ ^n_k \right \} \times \frac{x!}{(x-i)!}$。
  • 例题:《图的价值》

伯努利数

  • 含义:$\sum\limits_{i=1}^{n} i^d = \frac{1}{d+1} \sum\limits_{i=0}^{d} C_{d+1}^{i} B_i n^{d+1-i} $。其中的系数$B_i$就是伯努利数。
  • 递推公式:$ \sum\limits_{k=0}^{n} C_{n+1}^{k} \times B_k =0 $ 。复杂度是$O(n^2)$的。
  • 求值:运用多项式求逆可以做到$O(nlogn)$。然而我还不会,贴一个链接
  • 应用:自然数幂和(常用)。与两类斯特林数可以转化。
  • 例题:《一个人的数论》其实这个题并不很伯努利但是我做题太少。。。

莫比乌斯函数

  • 含义:$\mu(prime)=-1$,$\mu(i^2 \times x)=0$,else $\mu(x)=1$
  • 求值:线筛。杜教筛求前缀和。
  • 应用:容斥系数,莫比乌斯反演。
  • 例题:太多。

欧拉函数

  • 含义:比x小且与x互质的数的个数
  • 求值:线筛。
  • 应用:容斥系数,欧拉反演。
  • 例题:不少。

反演(个人理解)

  • 含义:你现在有用g函数得到f函数的公式,把它转化为用f函数表示g函数的形式。
  • 基本形式:$f(n) = \sum\limits_{condition1} g(i) \Leftrightarrow g(n)=\sum\limits_{condition2} f(i)$

二项式反演

  • 基本形式:$f(n)=\sum\limits_{i=0}^{n}  (-1)^{i} \times C_n^i \times g(i) \Leftrightarrow g(n)=\sum\limits_{i=0}^{n}  (-1)^{i} \times C_n^i \times f(i)$
  • 常用形式:$f(n)=\sum\limits_{i=0}^{n} C_n^i \times g(i) \Leftrightarrow g(n)=\sum\limits_{i=0}^{n}  (-1)^{n-i} \times C_n^i \times f(i)$
  • 应用:证明其它反演,化简带组合数的式子。
  • 例题:《染色》

莫比乌斯反演

  • 基本形式:$f(n)=\sum\limits_{d|n} g(d) \Leftrightarrow g(n) = \sum\limits_{d|n} f(d) \times \mu(\frac{n}{d})$
  • 常用形式:$[n]=\sum\limits_{d|n} \mu(d)$。
  • 应用:gcd/lcm之类的有关倍数,因子之类的题目。
  • 例题:《一个人的数论》

欧拉反演

  • 基本形式:$n=\sum\limits_{d|n} \phi(d)$
  • 应用:gcd/lcm之类的玩意。

子集反演

  • 基本形式:$f(S)=\sum\limits_{T \subseteq S} g(T) \Leftrightarrow g(S) = \sum\limits_{T \subseteq S} (-1)^{|S|-|T|}\times f(T)$
  • 应用:与FWT结合求解子集类问题。
  • 例题:《遗失的答案》(还不会做正在学习)

待补。。。

各种数和各种反演(所谓FFT的前置知识?)的更多相关文章

  1. fft.ntt,生成函数,各种数和各种反演

    前置知识: 一,导数 倒数其实就是函数的斜率函数 设D[f(x)]表示f(x)的导数,则满足 $$1,D[f(x)]=\lim\limits_{\delta x->\infty}\frac{f( ...

  2. 有标号DAG计数 [容斥原理 子集反演 组合数学 fft]

    有标号DAG计数 题目在COGS上 [HZOI 2015]有标号的DAG计数 I [HZOI 2015] 有标号的DAG计数 II [HZOI 2015]有标号的DAG计数 III I 求n个点的DA ...

  3. FFT,NTT入门

    目录 -1.前置知识 复数 单位根 单位根反演 0.卷积 1.FFT -1.前置知识 复数   复数单位\(i\):定义为\(i^2=-1\).\(i\)可以直接参与运算.   复数:形如\(z=a+ ...

  4. 很详细的FFT(快速傅里叶变换)概念与实现

    FFT 首先要说明一个误区,很多人认为FFT只是用来处理多项式乘的,其实FFT是用来实现多项式的系数表示法和点值表示法的快速转换的,所以FFT的用处远不止多项式乘. FFT的前置知识:点值表示法,复数 ...

  5. ZJOI 2019 划水记

    作为一个极其蒟蒻的OIer,虽然没有省选资格但还是去见见世面. ZJOI2019一试是在浙江省镇海中学.听名字就很霸气. 学习OI的最后一年,记录下一些事情,即使最终走到最后也一无所获,也是一段美好的 ...

  6. 多项式fft、ntt、fwt 总结

    做了四五天的专题,但是并没有刷下多少题.可能一开始就对多项式这块十分困扰,很多细节理解不深. 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的.多项式算法的过程就是把卷积做一种 ...

  7. 全网第二好懂的FFT(快速傅里叶变换)

    声明:本FFT是针对OI的.专业人员请出门左拐. Ⅰ前言 很久以前,我打算学习FFT. 然而,算法导论讲的很详细,却看不懂.网上博客更别说了,什么频率之类的都来了.我暗自下了决心:写一篇人看得懂的FF ...

  8. 浅谈FFT(快速傅里叶变换)

    前言 啊摸鱼真爽哈哈哈哈哈哈 这个假期努力多更几篇( 理解本算法需对一些< 常 用 >数学概念比较清楚,如复数.虚数.三角函数等(不会的自己查去(其实就是懒得写了(¬︿̫̿¬☆) 整理了一 ...

  9. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

随机推荐

  1. windows系统的python开发环境的搭建

    step1:  访问python官方网站下载python安装包 https://www.python.org/downloads/windows/ 下载自己想要的版本 勾上Add Python XX ...

  2. 成为java高手的成长历程想学好java必看

    1:J2SE入门阶段(3-6个月) 学习内容:J2SE常用类,JDBC等等 动态绑定,反射机制等 2:J2EE入门阶段(3个月) 学习内容:JSP/Servlet/JavaBean MVC结构的概念 ...

  3. Sockit 硬件接口编程——点亮一个LED

    1.话不多说上代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include < ...

  4. 跟着文档学习gulp1.1安装入门

    Step1:检查是否已经安装了node,npm 和 npX是否正确安装 Step2:安装gulp命令行工具(全局安装gulp) npm install --global gulp-cli Step3: ...

  5. Java使用iBatis批量插入数据到Oracle数据库

    Java使用iBatis批量插入数据到Oracle数据库 因为我们的数据跨库(mysql,oracle),单独取数据的话需要遍历好多遍,所以就想着先从mysql数据库中取出来的数据然后在oracle数 ...

  6. 【Java必修课】好用的Arrays.asList也有这三个坑

    好用的asList 在开发或写测试用例的过程中,经常会用到Arrays.asList()这个方法,可以快速方便地将数组转化成一个List.例如: List<String> list = A ...

  7. python内置模块-datetime

    摘录 廖雪峰网站 datetime是python内置的处理日期和时间的标准库 获取当前日期和时间 >>> from datetime import datetime >> ...

  8. 解决在IE11浏览器下,JQuery的AJAX方法不响应问题

    在项目的时候一直都是在使用谷歌浏览器在调试,后来在现场部署到服务器上的时候,客户使用的是IE浏览器,版本是11 在测试的过程中,出现几个问题,虽然是几个问题,但是问题的原因就是AJAX第一次响应,第二 ...

  9. Glide只播放一次Gif以及监听播放完成的实现方案

    需求: 近段时间正好有一个需求,是要实现Gif图只加载播放一次,并且要在Gif播放完毕后回调给系统的需求. 因为Glide 3系列的API与4系列还是有很大差距的,这里我们针对Glide 3.x和Gl ...

  10. centos安装redis并开启多个redis实例

    1.下载安装包       下载地址 :  http://download.redis.io/releases/,去里面找对应的版本下载        例如  wget http://download ...