YARN Introduce

1. MapReduce1.0缺陷

  • (1)存在单点故障
  • (2)JobTracker“大包大揽”导致任务过重(任务多时内存开销大,上限4000节点)
  • (3)容易出现内存溢出(分配资源只考虑MapReduce任务数,不考虑CPU、内存)
  • (4)资源划分不合理(强制划分为slot ,包括Map slot和Reduce slot)

2. YARN体系结构

  • MapReduce1.0既是一个计算框架,也是一个资源管理调度框架
  • 到了Hadoop2.0以后,MapReduce1.0中的资源管理调度功能,被单独分离出来形成了YARN,它是一个纯粹的资源管理调度框架,而不是一个计算框架
  • 被剥离了资源管理调度功能的MapReduce 框架就变成了MapReduce2.0,它是运行在YARN之上的一个纯粹的计算框架,不再自己负责资源调度管理服务,而是由YARN为其提供资源管理调度服务

ResourceManager
  • 处理客户端请求
  • 启动/监控ApplicationMaster
  • 监控NodeManager
  • 资源分配与调度
ApplicationMaster
  • 为应用程序申请资源,并分配给内部任务
  • 任务调度、监控与容错
NodeManager
  • 单个节点上的资源管理
  • 处理来自ResourceManger的命令
  • 处理来自ApplicationMaster的命令

2.1 ResourceManager

ResourceManager(RM)是一个全局的资源管理器,负责整个系统的资源管理和分配,主要包括两个组件,即调度器(Scheduler)和应用程序管理器(Applications Manager)。

调度器接收来自ApplicationMaster的应用程序资源请求,把集群中的资源以“容器”的形式分配给提出申请的应用程序,容器的选择通常会考虑应用程序所要处理的数据的位置,进行就近选择,从而实现“计算向数据靠拢”。

容器(Container)作为动态资源分配单位,每个容器中都封装了一定数量的CPU、内存、磁盘等资源,从而限定每个应用程序可以使用的资源量。

调度器被设计成是一个可插拔的组件,YARN不仅自身提供了许多种直接可用的调度器,也允许用户根据自己的需求重新设计调度器。

应用程序管理器(Applications Manager)负责系统中所有应用程序的管理工作,主要包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动等。

2.2 ApplicationMaster

ResourceManager接收用户提交的作业,按照作业的上下文信息以及从NodeManager收集来的容器状态信息,启动调度过程,为用户作业启动一个ApplicationMaster。

ApplicationMaster的主要功能是:

  • (1)当用户作业提交时,ApplicationMaster与ResourceManager协商获取资源,ResourceManager会以容器的形式为ApplicationMaster分配资源;
  • (2)把获得的资源进一步分配给内部的各个任务(Map任务或Reduce任务),实现资源的“二次分配”;
  • (3)与NodeManager保持交互通信进行应用程序的启动、运行、监控和停止,监控申请到的资源的使用情况,对所有任务的执行进度和状态进行监控,并在任务发生失败时执行失败恢复(即重新申请资源重启任务);
  • (4)定时向ResourceManager发送“心跳”消息,报告资源的使用情况和应用的进度信息;
  • (5)当作业完成时,ApplicationMaster向ResourceManager注销容器,执行周期完成。

2.3 NodeManager

NodeManager是驻留在一个YARN集群中的每个节点上的代理,主要负责:

  • 容器生命周期管理
  • 监控每个容器的资源(CPU、内存等)使用情况
  • 跟踪节点健康状况
  • 以“心跳”的方式与ResourceManager保持通信
  • 向ResourceManager汇报作业的资源使用情况和每个容器的运行状态
  • 接收来自ApplicationMaster的启动/停止容器的各种请求

需要说明的是,NodeManager主要负责管理抽象的容器,只处理与容器相关的事情,而不具体负责每个任务(Map任务或Reduce任务)自身状态的管理,因为这些管理工作是由ApplicationMaster完成的,ApplicationMaster会通过不断与NodeManager通信来掌握各个任务的执行状态。

2.4 集群部署

在集群部署方面,YARN的各个组件是和Hadoop集群中的其他组件进行统一部署的。

3. YARN工作流程

  • 步骤1:用户编写客户端应用程序,向YARN提交应用程序,提交的内容包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等
  • 步骤2:YARN中的ResourceManager负责接收和处理来自客户端的请求,为应用程序分配一个容器,在该容器中启动一个ApplicationMaster
  • 步骤3:ApplicationMaster被创建后会首先向ResourceManager注册
  • 步骤4:ApplicationMaster采用轮询的方式向ResourceManager申请资源
  • 步骤5:ResourceManager以“容器”的形式向提出申请的ApplicationMaster分配资源
  • 步骤6:在容器中启动任务(运行环境、脚本)
  • 步骤7:各个任务向ApplicationMaster汇报自己的状态和进度
  • 步骤8:应用程序运行完成后,ApplicationMaster向ResourceManager的应用程序管理器注销并关闭自己

4. YARN与MR1.0对比

从MapReduce1.0框架发展到YARN框架,客户端并没有发生变化,其大部分调用API及接口都保持兼容,因此,原来针对Hadoop1.0开发的代码不用做大的改动,就可以直接放到Hadoop2.0平台上运行。

总体而言,YARN相对于MapReduce1.0来说具有以下优势:

  • 大大减少了承担中心服务功能的ResourceManager的资源消耗
  • ApplicationMaster来完成需要大量资源消耗的任务调度和监控
  • 多个作业对应多个ApplicationMaster,实现了监控分布化

  • MapReduce1.0既是一个计算框架,又是一个资源管理调度框架,但是,只能支持MapReduce编程模型。而YARN则是一个纯粹的资源调度管理框架,在它上面可以运行包括MapReduce在内的不同类型的计算框架,只要编程实现相应的ApplicationMaster

  • YARN中的资源管理比MapReduce1.0更加高效

Hadoop - YARN Introduce的更多相关文章

  1. Hadoop YARN 100-1知识点

    0 YARN中实体 资源管理者(resource manager, RM) 长时间运行的守护进程,负责管理集群上资源的使用 节点管理者(node manager, NM) 长时间运行的守护进程,在集群 ...

  2. hadoop yarn running beyond physical memory used

    老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-c ...

  3. Hadoop YARN配置参数剖析—RM与NM相关参数

    注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) ...

  4. Hadoop Yarn内存资源隔离实现原理——基于线程监控的内存隔离方案

    注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目 ...

  5. hadoop错误org.apache.hadoop.yarn.exceptions.YarnException Unauthorized request to start container

    错误: 14/04/29 02:45:07 INFO mapreduce.Job: Job job_1398704073313_0021 failed with state FAILED due to ...

  6. hadoop Yarn 编程API

    客户端编程库: 所在jar包: org.apache.hadoop.yarn.client.YarnClient 使用方法: 1 定义一个YarnClient实例: private YarnClien ...

  7. MapReduce扩展:应用程序如何运行于Hadoop Yarn之上

    1. 背景   “应用程序运行于Hadoop Yarn之上”的需求来源于微博运维数据平台中的调度系统,即调度系统中的任务需要运行于Hadoop Yarn之上.这里的应用程序可以简单理解为一个普通的进程 ...

  8. Hadoop yarn配置参数

    参照site:http://hadoop.apache.org/docs/r2.6.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml 我们在配置yar ...

  9. Hadoop YARN ERROR 1/1 local-dirs are bad *, 1/1 log-dirs are bad *

    转 http://blog.csdn.net/u012303571/article/details/46913471   查看 nodemanager 日志发下 如下信息   2015-07-16 1 ...

随机推荐

  1. 给即将或刚进入it行业的朋友的参考--体育生转行到Java的经历

    首先声明,不喜勿喷我这个历经千辛万苦转入Java行业的人.相信很多正在学校中迷茫和在毕业后对于现状不满意的朋友通过各种的渠道进行信息汇总,了解了软件行业的高工资和多机会,正摩拳擦掌准备在这个领域大干一 ...

  2. 每日一问:Android 滑动冲突,你们都是怎样处理的

    坚持原创日更,短平快的 Android 进阶系列,敬请直接在微信公众号搜索:nanchen,直接关注并设为星标,精彩不容错过. 在 Android 开发中,滑动冲突总是我们一个无法避免的话题.而对于解 ...

  3. MyBatis从入门到精通:select较深层次的用法

    一,简单的情形 需求: 根据用户id获取用户拥有的所有角色,返回的结果为角色集合. 1.接口中增加的方法: List<SysRole> selectRolesByUserId(Long u ...

  4. JavaScript作用域及预编译

    几乎所有的编程语言都可以存储,访问,修改变量,那在JavaScript中这些变量放在那里?程序如何找到他们? js被归类于解释执行语言,但事实上他也是一门编译语言,因为他也要编译,但于传统的编译语言不 ...

  5. win10修改桌面图标之间的距离

    操作方法01首先用Win+R组合键打开运行界面,在界面的输入框中输入regedit命令,打开注册表. 02在打开的注册表界面中我们找到HKEY_Current_User下的Control Panel文 ...

  6. github访问不到,登陆不上

    为github添加host C:\WINDOWS\System32\drivers\etc 在host文件添加如下两行 192.30.253.112 github.com 151.101.113.19 ...

  7. HelloDjango 启动!免费带你学Django全栈!

    欢迎 追梦 入伙 HelloGitHub-Team,同时为我们带来了完全免费的 HelloDjango 系列教程,全网首发于 HelloGitHub 公众号.让想你的系列文章被跟多人看到,那就来加入我 ...

  8. Spring_AOP基于AspectJ的注解开发&JDBC的模板使用&事务管理(学习笔记3)

    一:AOP基于AspectJ的注解开发 1,简单的实例: 1)引入相应的jar包 ​ 2)在配置文件里引入相关约束 <beans xmlns="http://www.springfra ...

  9. springboot启动代码(自用)

    1.springboot配置解释 @AutoConfigurationPackage //自动配置包 //@Import(AutoConfigurationPackages.Registrar.cla ...

  10. C# 针对特定的条件进行锁操作,不用lock,而是mutex

    背景:用户领取优惠券,同一个用户需要加锁验证是否已经领取,不同用户则可以同时领取. 上代码示例: 1.创建Person类 /// <summary> /// Person类 /// < ...