【BZOJ3534】[SDOI2014] 重建(矩阵树定理)
大致题意: 给你一张图,每条边有一定存在概率。求存在的图刚好为一棵树的概率。
矩阵树定理是什么
如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理。
矩阵树定理的应用
此题中,直接根据\(p_{i,j}\)来套矩阵树定理显然是不可以的。
考虑我们把每个\(p_{i,j}\)变成\(\frac{p_{i,j}}{1-p_{i,j}}\),套用矩阵树定理,然后最后将结果乘上\(\prod_{i=1}^n\prod_{j=i+1}^n(1-p_{i,j})\),就是答案了。
此时度数矩阵和邻接矩阵中的值都应该用\(\frac p{1-p}\)去替换原先的\(1\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 50
#define DB double
#define eps 1e-8
using namespace std;
int n;double a[N+5][N+5];
class MatrixTreeSolver
{
private:
class Mat//矩阵
{
private:
int n;DB v[N+5][N+5];
I bool FindLine(CI x)
{
for(RI i=x+1;i<=n;++i)
{
if(fabs(v[i][x])<eps) continue;
for(RI j=x;j<=n;++j) swap(v[x][j],v[i][j]);return true;
}return false;
}
public:
I Mat(CI x=0):n(x){memset(v,0,sizeof(v));}
I DB *operator [] (CI x) {return v[x];}
I DB Det()//行列式
{
RI i,j,k,op=1;DB t,res=1;for(i=1;i<=n;++i)
{
if(fabs(v[i][i])<eps&&(op*=-1,!FindLine(i))) return 0;res*=v[i][i];
for(j=i+1;j<=n;++j) for(t=v[j][i]/v[i][i],k=i;k<=n;++k) v[j][k]-=t*v[i][k];
}return op*res;
}
}S;
public:
I void Solve()
{
RI i,j;DB t,res=1;S=Mat(n-1);
for(i=1;i<=n;++i) for(j=i+1;j<=n;++j)
(t=1-a[i][j])<eps&&(t=eps),a[i][j]/=t,res*=t,//求出矩阵中这一位的值
S[i][i]+=a[i][j],S[j][j]+=a[i][j],S[i][j]-=a[i][j],S[j][i]-=a[i][j];//求出度数矩阵减邻接矩阵
printf("%.8lf",S.Det()*res);//求答案
}
}T;
int main()
{
RI i,j;for(scanf("%d",&n),i=1;i<=n;++i) for(j=1;j<=n;++j) scanf("%lf",&a[i][j]);//读入
return T.Solve(),0;
}
【BZOJ3534】[SDOI2014] 重建(矩阵树定理)的更多相关文章
- BZOJ3534:[SDOI2014]重建(矩阵树定理)
Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运 ...
- [SDOI2014] 重建 - 矩阵树定理,概率期望
#include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 55; namespace mat ...
- BZOJ3534 [Sdoi2014]重建 【矩阵树定理】
题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...
- 【BZOJ3534】重建(矩阵树定理)
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...
- luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...
- [luoguP3317] [SDOI2014]重建(矩阵树定理)
传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cma ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- Linux下修改Mysql密码的三种方式
前言 有时我们会忘记Mysql的密码,或者想改一个密码,以下将对这两种情况修改密码的三种解决方法做个总结 本文都以用户为 root 为例 一.拥有原来的myql的root的密码 方法一: 在mysql ...
- css 适配
https://blog.csdn.net/weixin_35467885/article/details/80778992 1.通过link方法 link方法引入媒体类型其实就是在标签引用样式的时候 ...
- linux--解决anaconda升级pip问题
Anaconda指的是一个开源的Python发行版本,其包含了conda.Python等180多个科学包及其依赖项. 在用pip install命令安装东西时,有时会提示如下错误:升级pip You ...
- 巧妙利用selenium中的JS操作来处理特殊的文本框
在使用selenium对页面进行相关操作时,有时候会遇到以下三种情况: 1.日期框:无法直接输入文本,必须要选择某一天的日期并点击才会填入文本框: 2.检索框:可以直接输入文本,但必须要点击根据输入的 ...
- onunload事件不触发的探索
如果现有一需求:浏览器页面关闭时弹出一个对话框,询问是否要退出,应该怎么做呢? 可用onunload事件来实现,该事件会在刷新和关闭页面时执行 我用如下3种方法绑定该事件,但所有主流浏览器都无法 ...
- 使用celery执行Django串行异步任务
Django项目有一个耗时较长的update过程,希望在接到请求运行update过程的时候,Django应用仍能正常处理其他的请求,并且update过程要求不能并行,也不能漏掉任何一个请求 使用cel ...
- Vue修改单个组件的背景颜色
组件默认背景颜色为白色,但工作需要改成黑色,于是研究了一番. 很简单,只需在组件中使用两个钩子函数beforeCreate (),beforeDestroy () 代码如下: beforeCreate ...
- 定时器每隔10秒钟刷新一次jqgrid
//console.log('每隔*秒钟刷新一次'); var timer = window.setInterval(function() { $("#table_list_1") ...
- System 类初探
System 类 操作方法 取得当前的系统时间 currentTemiMillis() public static long currenTimeMillis() ; 实例: 统计某些操作的执行时间 ...
- ADB常用命令(adb常用命令)
基本用法 命令语法 adb 命令的基本语法如下: adb [-d|-e|-s <serialNumber>] <command> 如果只有一个设备/模拟器连接时,可以省略掉 [ ...