点此看题面

大致题意: 给你一张图,每条边有一定存在概率。求存在的图刚好为一棵树的概率。

矩阵树定理是什么

如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理

矩阵树定理的应用

此题中,直接根据\(p_{i,j}\)来套矩阵树定理显然是不可以的。

考虑我们把每个\(p_{i,j}\)变成\(\frac{p_{i,j}}{1-p_{i,j}}\),套用矩阵树定理,然后最后将结果乘上\(\prod_{i=1}^n\prod_{j=i+1}^n(1-p_{i,j})\),就是答案了。

此时度数矩阵和邻接矩阵中的值都应该用\(\frac p{1-p}\)去替换原先的\(1\)。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 50
#define DB double
#define eps 1e-8
using namespace std;
int n;double a[N+5][N+5];
class MatrixTreeSolver
{
private:
class Mat//矩阵
{
private:
int n;DB v[N+5][N+5];
I bool FindLine(CI x)
{
for(RI i=x+1;i<=n;++i)
{
if(fabs(v[i][x])<eps) continue;
for(RI j=x;j<=n;++j) swap(v[x][j],v[i][j]);return true;
}return false;
}
public:
I Mat(CI x=0):n(x){memset(v,0,sizeof(v));}
I DB *operator [] (CI x) {return v[x];}
I DB Det()//行列式
{
RI i,j,k,op=1;DB t,res=1;for(i=1;i<=n;++i)
{
if(fabs(v[i][i])<eps&&(op*=-1,!FindLine(i))) return 0;res*=v[i][i];
for(j=i+1;j<=n;++j) for(t=v[j][i]/v[i][i],k=i;k<=n;++k) v[j][k]-=t*v[i][k];
}return op*res;
}
}S;
public:
I void Solve()
{
RI i,j;DB t,res=1;S=Mat(n-1);
for(i=1;i<=n;++i) for(j=i+1;j<=n;++j)
(t=1-a[i][j])<eps&&(t=eps),a[i][j]/=t,res*=t,//求出矩阵中这一位的值
S[i][i]+=a[i][j],S[j][j]+=a[i][j],S[i][j]-=a[i][j],S[j][i]-=a[i][j];//求出度数矩阵减邻接矩阵
printf("%.8lf",S.Det()*res);//求答案
}
}T;
int main()
{
RI i,j;for(scanf("%d",&n),i=1;i<=n;++i) for(j=1;j<=n;++j) scanf("%lf",&a[i][j]);//读入
return T.Solve(),0;
}

【BZOJ3534】[SDOI2014] 重建(矩阵树定理)的更多相关文章

  1. BZOJ3534:[SDOI2014]重建(矩阵树定理)

    Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运 ...

  2. [SDOI2014] 重建 - 矩阵树定理,概率期望

    #include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 55; namespace mat ...

  3. BZOJ3534 [Sdoi2014]重建 【矩阵树定理】

    题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...

  4. 【BZOJ3534】重建(矩阵树定理)

    [BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...

  5. luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率

    首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...

  6. [luoguP3317] [SDOI2014]重建(矩阵树定理)

    传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cma ...

  7. 【Luogu】P3317重建(高斯消元+矩阵树定理)

    题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...

  8. 【算法】Matrix - Tree 矩阵树定理 & 题目总结

    最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...

  9. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

随机推荐

  1. WPF 获取系统 DPI 的多种方法

    原文:WPF 获取系统 DPI 的多种方法 WPF 获取系统 DPI 的多种方法 由于 WPF 的尺寸单位和系统的 DPI 相关,我们有时需要获取 DPI 值来进行一些界面布局的调整,本文汇总了一些 ...

  2. Batch Normalization、Layer Normalization、Instance Normalization、Group Normalization、Switchable Normalization比较

    深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更 ...

  3. [开源] FreeSql 配套工具,基于 Razor 模板实现最高兼容的生成器

    FreeSql 经过半年的开发和坚持维护,在 0.6.x 版本中完成了几大重要事件: 1.按小包拆分,每个数据库实现为单独 dll: 2.实现 .net framework 4.5 支持: 3.同时支 ...

  4. JMS入门Demo

    2.1点对点模式(邮箱) 点对点的模式主要建立在一个队列上面,当连接一个列队的时候,发送端不需要知道接收端是否正在接收,可以直接向ActiveMQ发送消息,发送的消息,将会先进入队列中,如果有接收端在 ...

  5. [IDA]批量载入结构体

    我们之前介绍了如果单独定义一个C结构体并转换为IDA中的结构体. 但是,在内核中有很多庞大的结构体,一环接着一环,手动导入不现实. 还存在一个问题,可能大小格式不匹配. 之前有一位老哥推荐我一个工具: ...

  6. 高强度学习训练第十三天总结:使用Netty实现一个http服务器

    Netty入门 Netty的重要性不言而喻.那么今天就来学习一下Netty. 整个项目基于Gradle搭建. Build如下所示: plugins { id 'java' } group 'cn.ba ...

  7. 协议分析中的TCP/IP网络协议

    - 链路层 第一层包含源mac及目的mac,随着传输路径的变化会发生变化,在mac之后,是下层网络协议的类型,图中,下层为IP协议. 在协议解析中,需要关注的是图中type这个字段的内容. - 网络层 ...

  8. iOS 唤起APP之URL Scheme

    什么是URL Scheme 简单的说,由于苹果选择使用沙盒机制来保障用户的隐私和安全,APP只能访问自己沙盒数据,但同时也阻碍了应用间合理的信息共享.因此苹果提供了一个可以在APP之间跳转的方法:UR ...

  9. 一文解读ITIL (转)

    首先声明自己不是ITIL方面的专家,特别是具体的规范细节,后面论述如有不当,请指正.但我为什么会提起它?主要是因为它和运维(IT服务管理)相关性太大了.早起的运维完全就是以ITIL来蓝本构建的,在当时 ...

  10. MySQL基础之数据管理【3】

    MySQL中的多表联查 --查询emp的id username age depName create table emp( id int unsigned auto_increment key, us ...