Linux 信号量之Posix基于内存的信号量
信号量(semaphore),也和互斥锁一样提供了线程间或者进程间的同步功能。
信号量有三种:
- Posix有名字的信号量
- Posix基于内存的信号量
- System V信号量
信号量比互斥锁高级,互斥锁只允许一个线程访问临界区,信号量可以多个,可以把信号量看作成互斥锁的升级版,但是如果能用互斥锁解决,就用互斥锁,互斥锁比信号量节省资源。
这篇文章只介绍Posix基于内存的信号量
1,单个生产者和单个消费者
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <semaphore.h>
#define NBUFF 10
int nitems;
struct {
int buff[NBUFF];
sem_t mutex, nempty, nstored;
} shared;
void* produce(void *args);
void* consume(void* args);
int main(int argc, char** argv){
pthread_t tid_produce, tid_consume;
if(argc != 2){
printf("usage error\n");
exit(1);
}
nitems = atoi(argv[1]);
//create 3 semaphore
sem_init(&shared.mutex, 0, 1);
sem_init(&shared.nempty, 0, NBUFF);
sem_init(&shared.nstored, 0, 0);
pthread_create(&tid_produce, NULL, produce, NULL);
pthread_create(&tid_consume, NULL, consume, NULL);
pthread_join(tid_produce, NULL);
pthread_join(tid_consume, NULL);
sem_destroy(&shared.mutex);
sem_destroy(&shared.nempty);
sem_destroy(&shared.nstored);
exit(0);
}
void* produce(void *args){
int i;
for(i = 0; i < nitems; ++i){
sem_wait(&shared.nempty);
sem_wait(&shared.mutex);
shared.buff[i % NBUFF] = i;
sem_post(&shared.mutex);
sem_post(&shared.nstored);
}
return NULL;
}
void* consume(void* args){
int i;
for(i = 0; i < nitems; ++i){
sem_wait(&shared.nstored);
sem_wait(&shared.mutex);
shared.buff[i % NBUFF] = i;
sem_post(&shared.mutex);
sem_post(&shared.nempty);
}
return NULL;
}
2,多个生产者和单个消费者
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <semaphore.h>
#define NBUFF 10
#define MAXTHRS 100
#define min(x,y) ( x > y ? y:x )
int nitems, nproducers;
struct {
int buff[NBUFF];
int idx;
int val;
sem_t mutex, nempty, nstored;
} shared;
void* produce(void *args);
void* consume(void* args);
int main(int argc, char** argv){
int i, count[MAXTHRS];
pthread_t tid_produce[MAXTHRS], tid_consume;
if(argc != 3){
printf("usage error\n");
exit(1);
}
nitems = atoi(argv[1]);
nproducers = min(atoi(argv[2]), MAXTHRS);
//create 3 semaphore
sem_init(&shared.mutex, 0, 1);
sem_init(&shared.nempty, 0, NBUFF);
sem_init(&shared.nstored, 0, 0);
for(i = 0; i < nproducers; ++i){
count[i] = 0;
pthread_create(&tid_produce[i], NULL, produce, &count[i]);
}
pthread_create(&tid_consume, NULL, consume, NULL);
for(i = 0; i < nproducers; ++i){
pthread_join(tid_produce[i], NULL);
printf("count[%d] = %d\n", i, count[i]);
}
pthread_join(tid_consume, NULL);
sem_destroy(&shared.mutex);
sem_destroy(&shared.nempty);
sem_destroy(&shared.nstored);
exit(0);
}
void* produce(void *arg){
int i;
for(i = 0; i < nitems; ++i){
sem_wait(&shared.nempty);
sem_wait(&shared.mutex);
if(shared.idx >= nitems){
sem_post(&shared.nempty);//注意点
sem_post(&shared.mutex);
return NULL;// all done
}
shared.buff[shared.idx % NBUFF] = shared.val;
shared.idx++;
shared.val++;
sem_post(&shared.mutex);
sem_post(&shared.nstored);
*((int*) arg) += 1;
}
return NULL;
}
void* consume(void* args){
int i;
for(i = 0; i < nitems; ++i){
sem_wait(&shared.nstored);
sem_wait(&shared.mutex);
if(shared.buff[i % NBUFF] != i){
printf("error:buff[%d] = %d\n", i, shared.buff[i % NBUFF]);
}
sem_post(&shared.mutex);
sem_post(&shared.nempty);
}
return NULL;
}
3,多个生产者和多个消费者
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <semaphore.h>
#define NBUFF 10
#define MAXTHRS 100
#define min(x,y) ( x > y ? y:x )
int nitems, nproducers, nconsumers;
struct {
int buff[NBUFF];
int idx;
int val;
int gidx;
int gval;
sem_t mutex, nempty, nstored;
} shared;
void* produce(void *args);
void* consume(void* args);
int main(int argc, char** argv){
int i, prodcount[MAXTHRS], conscount[MAXTHRS];
pthread_t tid_produce[MAXTHRS], tid_consume[MAXTHRS];
if(argc != 4){
printf("usage error\n");
exit(1);
}
nitems = atoi(argv[1]);
nproducers = min(atoi(argv[2]), MAXTHRS);
nconsumers = min(atoi(argv[3]), MAXTHRS);
//create 3 semaphore
sem_init(&shared.mutex, 0, 1);
sem_init(&shared.nempty, 0, NBUFF);
sem_init(&shared.nstored, 0, 0);
for(i = 0; i < nproducers; ++i){
prodcount[i] = 0;
pthread_create(&tid_produce[i], NULL, produce, &prodcount[i]);
}
for(i = 0; i < nconsumers; ++i){
conscount[i] = 0;
pthread_create(&tid_consume[i], NULL, consume, &conscount[i]);
}
for(i = 0; i < nproducers; ++i){
pthread_join(tid_produce[i], NULL);
printf("prodcount[%d] = %d\n", i, prodcount[i]);
}
for(i = 0; i < nconsumers; ++i){
pthread_join(tid_consume[i], NULL);
printf("conscount[%d] = %d\n", i, conscount[i]);
}
sem_destroy(&shared.mutex);
sem_destroy(&shared.nempty);
sem_destroy(&shared.nstored);
exit(0);
}
void* produce(void *arg){
int i;
for(i = 0; i < nitems; ++i){
sem_wait(&shared.nempty);
sem_wait(&shared.mutex);
if(shared.idx >= nitems){
sem_post(&shared.nstored);//注意点
sem_post(&shared.nempty);//注意点
sem_post(&shared.mutex);
return NULL;// all done
}
shared.buff[shared.idx % NBUFF] = shared.val;
shared.idx++;
shared.val++;
sem_post(&shared.mutex);
sem_post(&shared.nstored);
*((int*) arg) += 1;
}
return NULL;
}
void* consume(void* arg){
int i;
for(; ;){
sem_wait(&shared.nstored);
sem_wait(&shared.mutex);
if(shared.gidx >= nitems){
sem_post(&shared.nstored);//注意点
sem_post(&shared.mutex);
return NULL;// all done
}
i = shared.gidx % NBUFF;
if(shared.buff[i] != shared.gval){
printf("error:buff[%d] = %d\n", i, shared.buff[i]);
}
shared.gidx++;
shared.gval++;
sem_post(&shared.mutex);
sem_post(&shared.nempty);
*((int*) arg) += 1;
}
return NULL;
}
c/c++ 学习互助QQ群:877684253

本人微信:xiaoshitou5854
Linux 信号量之Posix基于内存的信号量的更多相关文章
- Linux 信号量之Posix有名字的信号量
信号量(semaphore),也和互斥锁一样提供了线程间或者进程间的同步功能. 信号量有三种: Posix有名字的信号量 Posix基于内存的信号量 System V信号量 信号量比互斥锁高级,互斥锁 ...
- linux第11天 共享内存和信号量
今天主要学习了共享内存和信号量 在此之前,有个管道问题 ls | grep a 整句话的意思是将ls输出到管道的写端,而流通到另一端的读端,grep a则是从管道的读端读取相关数据,再做筛选 共享内存 ...
- Linux进程同步之POSIX信号量
POSIX信号量是属于POSIX标准系统接口定义的实时扩展部分.在SUS(Single UNIX Specification)单一规范中,定义的XSI IPC中也同样定义了人们通常称为System V ...
- system V信号量和Posix信号量
一.函数上的区别 信号量有两种实现:传统的System V信号量和新的POSIX信号量.它们所提供的函数很容易被区分:对于所有System V信号量函数,在它们的名字里面没有下划线.例如,应该是sem ...
- 信号量(Posix)
Posix信号量分为有名信号量和无名信号量 1. Posix有名信号量 有名信号量既可以用于线程间的同步也可以用于进程间的同步 sem都是创建在/dev/shm目录下,名字格式sem.xxx,只需要指 ...
- 第三十三章 System V共享内存与信号量综合
用信号量解决生产者.消费者问题 实现shmfifo ip.h #ifndef _IPC_H #define _IPC_H #include <unistd.h> #include < ...
- linux网络编程-posix信号量与互斥锁(39)
-posix信号量信号量 是打开一个有名的信号量 sem_init是打开一个无名的信号量,无名信号量的销毁用sem_destroy sem_wait和sem_post是对信号量进行pv操作,既可以使用 ...
- Linux下用信号量实现对共享内存的访问保护
转自:http://www.cppblog.com/zjl-1026-2001/archive/2010/03/03/108768.html 最近一直在研究多进程间通过共享内存来实现通信的事情,以便高 ...
- Linux 内核同步之自旋锁与信号量的异同【转】
转自:http://blog.csdn.net/liuxd3000/article/details/8567070 Linux 设备驱动中必须解决的一个问题是多个进程对共享资源的并发访问,并发访问会导 ...
随机推荐
- [PHP] error_reporting(0)可以屏蔽Fatal error错误
按照以前的印象,error_reporting(0)屏蔽不了php的Fatal error级别的错误.但是今天我遇到了一个问题才发现,它竟然可以屏蔽任何错误,包括Fatal error,浏览器会看不到 ...
- [PHP] CentOS下搭建下PHP的运行环境
在公司里面有分配的测试机,所有的开发代码都运行在测试机里面.因为公司的测试机机房退租,所以要在新申请的几台测试机上搭建开发环境.开发环境尽量做到和线上的环境一致,包括代码的目录路径,运行程序的进程用户 ...
- 201871010111-刘佳华《面向对象程序设计(java)》第十五周学习总结
201871010111-刘佳华<面向对象程序设计(java)>第十五周学习总结 实验十三 Swing图形界面组件(二) 实验时间 2019-12-6 第一部分:理论知识总结 5> ...
- 肖哥讲jquery:
jquery 是一个模块 一个库 js封装的一个库 导入jq <script src="jquery.js"></script> <script ...
- CF1252J Tiling Terrace
CF1252J Tiling Terrace 洛谷评测传送门 题目描述 Talia has just bought an abandoned house in the outskirt of Jaka ...
- C++ string push_back()
函数功能: 在后面添加一项 vector头文件的push_back函数,在vector类中作用为在vector尾部加入一个数据.string中的push_back函数,作用是字符串之后插入一个字符. ...
- 【day09】PHP
一.函数 1. 作用域(Scope) (1)局部变量:变量在声明的代码段中有效 a.动态变量 b.静态变量:static ,用在函数中,当调用函数后内存不释放,能存储变量的最后的值. (2)全局变量: ...
- 优雅的阅读CSDN博客
CSDN现在似乎不强制登录了2333.但是广告多了也是碍眼的不行...将下列css添加到stylus中就行了. 代码转自xzz的博客. 自己修改了一下,屏蔽了登录弹出框. .article_conte ...
- [LeetCode] 11. Container With Most Water 装最多水的容器
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). ...
- python-5-str常用操作
前言 本节将讲解的是字符串 str 常用的操作方法,与 for 循环. 一.srt 常用操作 1.首个字母大写: # 1.首个字母大写 s = 'xiao long' s1 = s.capitaliz ...