A-01 最小二乘法
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
最小二乘法
最小二乘法,可以理解为最小平方和,即误差的最小平方和,在线性回归中,\(误差=真实值-预测值\)。最小二乘法的核心思想就是——通过最小化误差的平方和,使得拟合对象无限接近目标对象,最小二乘法一般解决线性问题。
一、最小二乘法——代数法
假设线性回归的假设函数为
\[
\begin{align}
h_\omega(x_0,x_1,\cdots,x_n) & = \omega_0x_0+\omega_1x_1+\cdots+\omega_nx_n \\
& = \sum_{i=0}^n \omega_ix_i
\end{align}
\]
其中\(n-1\)是特征数。如果针对所有的\(\omega_i\quad(i=1,2,\cdots,n)\)而言,假设函数是非线性的,但是针对某一个\(\omega_i\)的话,由于变量只剩下一个\(\omega_i\),假设函数就是线性的,既可以使用最小二乘法求解。
通过线性回归的假设函数既可以得到目标函数为
\[
\begin{align}
J(\omega_0,\omega_1,\cdots,\omega_n) & = \sum_{j=1}^m (h_\omega(x^{(j)})-y^{(j)})^2 \\
& = \sum_{j=1}^m(\sum_{i=0}^n \omega_ix_i^{(j)} - y^{(j)})^2
\end{align}
\]
其中\(m\)为样本数。
利用目标函数分别对\(\omega_i\)求偏导,并且令导数为0,即
\[
\sum_{j=1}^m \sum_{i=0}^n (\omega_ix_i^{(j)} - y^{(j)})x_i^{(j)} = 0
\]
通过求解上式,可以得到\(n+1\)元一次方程组,通过求解这个方程组就可以的得到所有的\(\omega_i\)。
二、最小二乘法——矩阵法
最小二乘法矩阵法比代数法简单不少。我们把代数法中线性回归的假设函数可以写成
\[
h_\omega(X) = X\omega
\]
其中\(h_\omega(X)\)是\(m*1\)维的向量,\(X\)是\(m*n\)维的矩阵,\(\omega\)是\(n*1\)维的向量,\(m\)为样本数,\(n\)为特征数。
通过上述矩阵形式的假设函数可以得到矩阵形式的目标函数为
\[
J(\omega)={\frac{1}{2}}(X\omega-Y)^T(X\omega-Y)
\]
其中\({\frac{1}{2}}\)只是为了方便计算。
目标函数对\(\omega\)求导取0,可以得
\[
\nabla_\omega{J(\omega)} = X^T(X\omega-Y) =0
\]
上述求偏导使用了矩阵求导链式法则和两个矩阵求导的公式
\[
\begin{align}
& \nabla_X(X^TX) = 2X \\
& \nabla_Xf(AX+B) = A^T\nabla_{AX+B}f
\end{align}
\]
通过对上述式子整理可得
\[
\begin{align}
& X^TX\omega=X^TX\quad{两边同时乘}(X^TX)^{-1} \\
& \omega = (X^TX)^{-1}X^TY
\end{align}
\]
通过上述的化简可以直接对向量\(\omega\)求导,而不需要对\(\omega\)中的每一个元素求偏导。
三、最小二乘法优缺点
3.1 优点
- 简洁高效,比梯度下降法方便
3.2 缺点
- 最小二乘法需要计算\(X^TX\)的逆矩阵,可能\(X^TX\)没有逆矩阵(一般需要考虑使用其他的优化算法,或者重新处理数据让\(X^TX\)有逆矩阵)
- 当特征数\(n\)非常大的时候,\(X^TX\)的计算量非常大(使用随机梯度下降法或使用降维算法降低特征维度)
- 最小二乘法只有拟合函数为线性的时候才可以使用(想办法通过某些机巧让拟合函数转化为线性的)
A-01 最小二乘法的更多相关文章
- 机器学习:R语言中如何使用最小二乘法
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同 ...
- 机器学习:Python中如何使用最小二乘法
之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经 ...
- 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...
- Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失
损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失 ...
- 最小二乘法 及python 实现
参考 最小二乘法小结 机器学习:Python 中如何使用最小二乘法 什么是” 最小二乘法” 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳 ...
- 最小二乘法多项式曲线拟合原理与实现 zz
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x). 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] ...
- 推荐系统之最小二乘法ALS的Spark实现
1.ALS算法流程: 初始化数据集和Spark环境----> 切分测试机和检验集------> 训练ALS模型------------> 验证结果-----------------& ...
- matlab和C语言实现最小二乘法
参考:https://blog.csdn.net/zengxiantao1994/article/details/70210662 Matlab代码: N = ; x = [ ]; y = [ ]; ...
- 转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线 ...
- Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一 ...
随机推荐
- 一起来读Netty In Action之传输(三)
当我们的应用程序需要接受比预期多很多的并发连接的时候,我们需要从阻塞传输切换到非阻塞传输上去,如果是我们的网络编程是基于jdk提供的API进行开发地的话,这种传输模式的切换几乎要我们重构整个网络传输相 ...
- 【Spring】 IOC Base
一.关于容器 1. ApplicationContext和BeanFactory 2. 配置文件 XML方式 Java-configuration 方式 @Configuration 3. 初始化容器 ...
- Go语言基础之基本数据类型
Go语言中有丰富的数据类型,除了基本的整型.浮点型.布尔型.字符串外,还有数组.切片.结构体.函数.map.通道(channel)等.Go 语言的基本类型和其他语言大同小异. 基本数据类型 整型 整型 ...
- Java中的java.lang.Class API 详解
且将新火试新茶,诗酒趁年华. 概述 Class是一个位于java.lang包下面的一个类,在Java中每个类实例都有对应的Class对象.类对象是由Java虚拟机(JVM)自动构造的. Class类的 ...
- Unity3D_04_GameObject,Component,Time,Input,Physics
Unity3D是一个Component-Based的游戏引擎,并且为GamePlay Programmer提供了很多游戏性层上的支持. 1.可以在图形界面上设计动画状态转换的Animator. 2.可 ...
- 2、顺序表的实现(java代码)
1.这里实现了简单的顺序表的,为空判断.是否已满判断,插入.删除,查询元素下标等功能 public class Linear_List { private int[] arr; //用来保存数据 pr ...
- Java第二次作业第三题
四叶玫瑰线的图形设计:当用鼠标拖拽改变窗口大小时,四叶玫瑰线会重新绘制 package naizi; import java.awt.*; import java.awt.event.*; impor ...
- Python学习-is和==区别, encode和decode
一.is 和 == 介绍 1. is 比较的是两个对象的内存地址是否相同,它们是不是同一个对象. 2. == 比较的是两个对象的内容是否相同. 在使用is前,先介绍Python的一个内置函数id( ...
- Intellij IDEA 2019 + Java Spring MVC + Hibernate学习笔记(1)
之前的技术栈一直是围绕.net 做的,现在.net 技术栈的使用越来越少,越来越窄.好多原来的同事都转Java开发了. 最近公司变动,自己需要重新找个坑,压力山大.好多要求Java技术栈的根本没机会进 ...
- Anaconda基本认识
Anaconda Distribution是执行Python数据科学和机器学习最简单的方法. 它包括250多种流行的数据科学软件包,以及适用于Windows,Linux和MacOS的conda软件包和 ...