关于lowbit运算的相关知识

本篇随笔简单讲解一下计算机中位运算的一类重要运算方式——\(lowbit\)运算。

lowbit的概念

我们知道,任何一个正整数都可以被表示成一个二进制数。如:

\[(2)_{10}=(10)_2
\]

\[(4)_{10}=(100)_2
\]

\[\cdots
\]

那么定义一个函数\(f=lowbit(x)\),这个函数的值是\(x\)的二进制表达式中最低位的\(1\)所对应的值。

比如:

\[(6)_{10}=(110)_2
\]

那么\(lowbit(6)\)就等于\(2\),因为\((110)_2\)中最低位(就是从右往左数的第二位)对应的数是\(2^1=2\)

所以假设一个数的二进制最低位的\(1\)在从右往左数的第\(k\)位,那么它的\(lowbit\)值就是

\[2^{k-1}
\]

lowbit函数的实现

lowbit函数实现有两种方式:

一、

x&(x^(x-1))

二、

x&-x

简单解释一下:

我们得到lowbit的值,只需要得到最后一个1的位置,并且把除了这个位置之外的所有位置全部置成零。然后输出就可以。

那么我们看一看x&(x^(x-1))

拿上面的6举例:

\[(110)_2-1=(101)_2
\]

我们发现,根据小学数学减法运算的借位原则(滑稽),对一个二进制数进行减1,那么会出现从这个这个数的最后一个1开始到最后的所有数都取反,即构成一个\(01111\cdots\)的串。

我们把这个数与原数异或,就会造成:第一个1以后的数(包括第一个1)全部取1.其他的位全部取0.即构成一个由一堆0后面跟一堆1的串。

那么再把原式做一个与运算,那么除了原来的那个1(对应位都是1)为1,其他位全是0,完成任务。

那么我们再看一看x&-x

根据计算机补码的性质。

补码就是原码的反码加一

如:

\[(110)_2=6
\]

反码:

\[(001)_2
\]

加一:

\[(010)_2
\]

可以发现变为反码后 x 与反码数字位每一位都不同, 所以当反码加1后神奇的事情发生了,反码会逢1一直进位直到遇到0,且这个0变成了1,所以这个数最后面构造了一个 100… 串。 由于是反码,进位之后由于1的作用使进位的部分全部取反及与原码相同,所以可以发现 lowbit 以前的部分 x 与其补码即 -x 相反, lowbit x 与 -x 都是1,lowbit 以后 x 与 -x 都是0 所以 x&-x 后除了 lowbit 位是1,其余位都是0。符合条件。

用lowbit运算统计1的个数

我们可以使用lowbit运算统计一个整数的二进制形式下1的个数。

实现原理很简单啦,就是:我们先用lowbit运算找出\(lowbit(x)\),然后用原数减去这个数,依次循环,直到为0为止。

这也是树状数组的实现原理。

代码:

while(x)
{
x-=x&-x;
ans++;
}

(巨短无比)

lowbit运算的应用

关于lowbit运算,最著名的应用应该算是树状数组。但是lowbit的神妙远远不止树状数组,在很多二进制和位运算的相关题目中,都有lowbit运算的影子。甚至,在状态压缩DP中,lowbit也扮演着一份不可忽视的角色。

浅谈lowbit运算的更多相关文章

  1. 浅谈JavaScript浮点数及其运算

    原文:浅谈JavaScript浮点数及其运算     JavaScript 只有一种数字类型 Number,而且在Javascript中所有的数字都是以IEEE-754标准格式表示的.浮点数的精度问题 ...

  2. 浅谈Linux中的信号处理机制(二)

    首先谢谢 @小尧弟 这位朋友对我昨天夜里写的一篇<浅谈Linux中的信号处理机制(一)>的指正,之前的题目我用的“浅析”一词,给人一种要剖析内核的感觉.本人自知功力不够,尚且不能对着Lin ...

  3. 浅谈DES加密算法

    一.DES加密算法介绍 1.要求密钥必须是8个字节,即64bit长度 2.因为密钥是byte[8] , 代表字符串也可以是非可见的字节,可以与Base64编码算法一起使用 3.加密.解密都需要通过字节 ...

  4. 浅谈Base64编码算法

    一.什么是编码解码 编码:利用特定的算法,对原始内容进行处理,生成运算后的内容,形成另一种数据的表现形式,可以根据算法,再还原回来,这种操作称之为编码. 解码:利用编码使用的算法的逆运算,对经过编码的 ...

  5. 【转】 浅谈Radius协议

    浅谈Radius协议 2013-12-03 16:06 5791人阅读 评论(0) 收藏 举报  分类: Radius协议分析(6)  从事Radius协议开发有段时间了,小弟不怕才疏学浅,卖弄一下, ...

  6. 转:浅谈Radius协议 -来自CSDN:http://blog.csdn.net/wangpengqi/article/details/17097221

    浅谈Radius协议 2013-12-03 16:06 5791人阅读 评论(0) 收藏 举报  分类: Radius协议分析(6)  从事Radius协议开发有段时间了,小弟不怕才疏学浅,卖弄一下, ...

  7. 转:浅谈C/C++中的指针和数组(一)

    再次读的时候实践了一下代码,结果和原文不一致 error C2372: 'p' : redefinition; different types of indirection 不同类型的间接寻址 /// ...

  8. 浅谈线程池(中):独立线程池的作用及IO线程池

    原文地址:http://blog.zhaojie.me/2009/07/thread-pool-2-dedicate-pool-and-io-pool.html 在上一篇文章中,我们简单讨论了线程池的 ...

  9. 转载 浅谈C/C++中的static和extern关键字

    浅谈C/C++中的static和extern关键字 2011-04-21 16:57 海子 博客园 字号:T | T   static是C++中常用的修饰符,它被用来控制变量的存贮方式和可见性.ext ...

随机推荐

  1. 【Linux命令】nohup命令用法

    nohup命令用法 当我们想将某个脚本或程序运行在后台的时候.我们一般会在程序或脚本后面添加 & 字符来表示在后台运行,但使用& 运行在后台,当我们将shell窗口关闭时,该脚本或程序 ...

  2. oracle视图和索引

    视图和索引 视图 视图的作用 控制数据访问.简化查询.避免重复访问相同的数据 视图的优点 限制用户只能通过视图检索数据,用户看不到底层基表 注意事项 视图可以理解为临时表,会随着真实表的数据变化而自动 ...

  3. 在windows系统上面部署springboot项目并设置其开机启动

    前言 最近的项目需要在客户的服务器上面部署一个项目然后进行测试,服务器的系统是windows server2008的,以前部署的项目都是在linux系统上面居多,就算是在windows系统上面自己玩的 ...

  4. linux服务器上配置进行kaggle比赛的深度学习tensorflow keras环境详细教程

    本文首发于个人博客https://kezunlin.me/post/6b505d27/,欢迎阅读最新内容! full guide tutorial to install and configure d ...

  5. [转]使用IConfigureNamedOptions和ConfigureAll配置命名选项

    这是我上一篇关于在ASP.NET Core 2.x中使用多个强类型设置实例的后续文章.在文章的结尾,我介绍了命名选项的概念,该选项已添加到ASP.NET Core 2.0中.在本文中,我将详细介绍如何 ...

  6. C++ const使用总结

    这里针对C++中const的一些一般用法进行一下简单的总结 一.定义常量 常量不可修改 : ; 与#define宏定义常量的区别:(1)const常量具有类型,编译器可以进行安全检查:#define宏 ...

  7. MySQL(10)---自定义函数

    MySQL(10)---自定义函数 之前讲过存储过程,存储过程和自定义函数还是非常相似的,其它的可以认为和存储过程是一样的,比如含义,优点都可以按存储过程的优点来理解. 存储过程相关博客: 1.MyS ...

  8. javascript构造函数深度克隆递归

    <script type="text/javascript"> var obj={ name:'段丛磊', gex:18, sss:['李伟',18], fun:fun ...

  9. C# WinForm实现禁止最大化、最小化、双击标题栏、双击图标等操作

    protected override void WndProc(ref Message m) { if (m.Msg==0x112) { switch ((int) m.WParam) { //禁止双 ...

  10. Python 3 行代码 5 秒抠图的 AI 神器,根本无需 PS

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 苏克1900 PS:如有需要Python学习资料的小伙伴可以加点击下 ...