问题描述

BZOJ2073


题解

发现 \(n \le 16\) ,显然想到状压

设 \(opt[S]\) 代表过河集合为 \(S\) 时,最小时间。

枚举 \(S\) 的子集,进行转移


枚举子集的方法

对于 \(j\) 为 \(k\) 的子集

当知道 \(j\) 时

for(int k=(j+1)|j;k<=S;k=(k+1)|j)

当知道 \(k\) 时

for(int j=(k-1)&k;j;j=(j-1)&k)

\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} const int maxn=19;
const int INF=0x3f3f3f3f; int mx,n;
int opt[1<<17];
int t[maxn],w[maxn]; pair<int,int> calc(int x,int y){
int res1(0),res2(0);
for(int i=1;i<=n;i++){
int k=((x>>(i-1))&1),p=((y>>(i-1))&1);
if(k==1&&p==0) res1+=w[i],res2=max(res2,t[i]);
}
return make_pair(res1,res2);
} int main(){
read(mx);read(n);
for(int i=1;i<=n;i++){
read(t[i]);read(w[i]);
}
memset(opt,0x3f,sizeof(opt));
opt[0]=0;
for(int i=1;i<(1<<n);i++){
for(int j=(i-1)&i;1;j=(j-1)&i){
int W,T;
pair <int,int> pr=calc(i,j);
W=pr.first,T=pr.second;
if(W<=mx) opt[i]=min(opt[i],opt[j]+T);
if(j==0) break;
}
}
printf("%d\n",opt[(1<<n)-1]);
return 0;
}

BZOJ2073 「POI2004」PRZ 状压DP的更多相关文章

  1. loj2318 「NOIP2017」宝藏[状压DP]

    附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...

  2. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

  3. BZOJ 2073: [POI2004]PRZ( 状压dp )

    早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 ...

  4. [POI2004] PRZ - 状压dp

    很简单的子集枚举状压dp 这个 (j-1)&i 的子集枚举是真的骚气 #include <bits/stdc++.h> using namespace std; int W,n,t ...

  5. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  6. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  7. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  8. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  9. 【loj6177】「美团 CodeM 初赛 Round B」送外卖2 Floyd+状压dp

    题目描述 一张$n$个点$m$条边的有向图,通过每条边需要消耗时间,初始为$0$时刻,可以在某个点停留.有$q$个任务,每个任务要求在$l_i$或以后时刻到$s_i$接受任务,并在$r_i$或以前时刻 ...

随机推荐

  1. 0. gitlab 一些常用知识

    Monitor 但是有反映  提交慢的情况时候.  可以查看一下队列 使用root账号 gitlab最多可以同时25个队列.  多了需要排队. 可以查看一下原因.

  2. MySQL执行状态的查看与分析

    当感觉mysql性能出现问题时,通常会先看下当前mysql的执行状态,使用 show processlist 来查看,例如: 其中state状态列信息非常重要,先看下各列含义,然后看下state常用状 ...

  3. 给Java0基础的五个学习的思路?

    关于Java初学者来说,想学习Java教程,需求了解,根底打好才干学得更好,Java教程之学习Java的路线图的五个必经阶段,希望能对Java学习者有所帮忙. 第一个阶段-java根底阶段 1.jav ...

  4. mac--“-bash: brew: command not found”,怎么解决?

    报错 “-bash: brew: command not found” 执行下面命令,安装HomeBrew ruby -e "$(curl -fsSL https://raw.githubu ...

  5. ReactNative: ReactNative初始项目的结构

    一.介绍 初学RN,一切皆新.在上篇中成功地创建并运行了一个React-Native项目,这个demo的基本结构都是系统已经创建好的,开发者在此结构下完成自己的开发即可.分别用Xcode和WebSto ...

  6. 13-scrapy中selenium的应用

    一. 引入 在通过scrapy框架进行某些网站数据爬取的时候,往往会碰到页面动态数据加载的情况发生,如果直接使用scrapy对其url发请求,是绝对获取不到那部分动态加载出来的数据值.但是通过观察我们 ...

  7. C++ 类的前向声明的用法

    我们知道C++的类应当是先定义,然后使用.但在处理相对复杂的问题.考虑类的组合时,很可能遇到俩个类相互引用的情况,这种情况称为循环依赖. 例如: class A { public: void f(B ...

  8. Delphi - 创建SuperDll 持续更新

    Delphi SuperDll 作为一名5年的Delpher,一直认为Delphi是桌面应用的王者,我相信其他的Delpher也这么认为. 但是,慢慢的我发现普通方式的Delphi开发会造成代码的严重 ...

  9. Protobuffer学习文档

    官方EN:https://developers.google.com/protocol-buffers/docs/pythontutorial 中文:https://cloud.tencent.com ...

  10. new一个对象的初始化过程

    ############################### 今天总结一下,new对象的初始化过程. ############################### 首先,当不含static成员时, ...