这个题目中 斜率优化DP相当于存在一个 y = kx + z

然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少。

那么对于给定的点来说 我们可以维护出一个下凸壳,因为如果存在一个上突壳的话,那么上突壳的点是一定不会被选上的。

所以对于解来说,只有下凸壳的点再会被选到。

所以我们就可以用单调队列维护处这个下凸壳。

假如我们保证给定的k是单调递增的, 那么我们就可以把前面一段不需要的东西给删掉。

假如k不是单调的,则我们就可以用二分找到第一个 >  询问k的答案。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 3e5 + ;
LL F[N], sumt[N], sumc[N];
int q[N];
int L = , R = ;
int solve(LL tmp){
if(L == R) return L;
int l = L, r = R - ;
while(l <= r){
int m = l+r >> ;
if(F[q[m+]] - F[q[m]] <= (tmp)*(sumc[q[m+]]-sumc[q[m]])) l = m+;
else r = m-;
}
return l;
}
int main(){
int n, s;
scanf("%d%d", &n, &s);
for(int i = ; i <= n; ++i){
scanf("%lld%lld", &sumt[i], &sumc[i]);
sumt[i] += sumt[i-];
sumc[i] += sumc[i-];
}
for(int i = ; i <= n; ++i){
int p = solve(s+sumt[i]);
F[i] = F[q[p]] - (s+sumt[i]) * sumc[q[p]] + sumt[i] * sumc[i] + s * sumc[n];
while(L < R && ((F[q[R]]-F[q[R-]])*(sumc[i]-sumc[q[R]]) >= (F[i]-F[q[R]])*(sumc[q[R]]-sumc[q[R-]]))) R--;
q[++R] = i;
}
cout << F[n] << endl;
return ;
}

bzoj 2726 任务安排 斜率优化DP的更多相关文章

  1. bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...

  2. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  3. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  4. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  5. BZOJ 1597 土地购买(斜率优化DP)

    如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...

  6. HDU 3824/ BZOJ 3963 [WF2011]MachineWorks (斜率优化DP+CDQ分治维护凸包)

    题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[ ...

  7. BZOJ 3675: 序列分割 (斜率优化dp)

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  8. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  9. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

随机推荐

  1. 洛谷P2630 题解

    我先讲一下我的思路 将A,B,C,D四种操作用函数储存起来: 枚举所有可能出现的情况:A,B,C,D,AA,AB,AC,AD,BB,BC,BD,CC,CD,DD,ABC,ABD,ACD,BCD,ABC ...

  2. kube-proxy源码解析

    kubernetes离线安装包,仅需三步 kube-proxy源码解析 ipvs相对于iptables模式具备较高的性能与稳定性, 本文讲以此模式的源码解析为主,如果想去了解iptables模式的原理 ...

  3. c++/c关于函数指针

    顺便提一句:指针也是一种变量类型 和 int double 这些类型是一个级别 不同的是它的值是地址 #include "stdafx.h"#include<stdlib.h ...

  4. 【win】【qt5安装】【qt5.5.1安装及第一个示例make错误】

    [前言] 昨天按照需求将qt程序从linux系统移植到win上使用(其实有点缪论了,本人linux用的中标麒麟系统对于发布发布系统版本麒麟(注:以下用麒麟代替中标麒麟,什么银河麒麟,优麒麟的,我现在只 ...

  5. 页面性能监控之performance

    页面性能监测之performance author: @TiffanysBear 最近,需要对业务上的一些性能做一些优化,比如降低首屏时间.减少核心按钮可操作时间等的一些操作:在这之前,需要建立的就是 ...

  6. Rootkit与后门隐藏技术

    目录 简介 linux虚拟文件系统VFS rootkit的功能 隐藏文件 基本方法 高级方法 系统调用流程 hook sys_getdents sys_getdents的调用树 最底层的方法 隐藏进程 ...

  7. 【数据结构】线段树(Segment Tree)

    假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作. 1.(query)随机在这个数组中选一个区间,求出这个区间所有数的和. 2.(update)不断地随机修改这个数组中 ...

  8. ZooKeeper系列(五)—— ACL 权限控制

    一.前言 为了避免存储在 Zookeeper 上的数据被其他程序或者人为误修改,Zookeeper 提供了 ACL(Access Control Lists) 进行权限控制.只有拥有对应权限的用户才可 ...

  9. 携程PMO--如何召开卓有成效的回顾会

      话题介绍   回顾会提供团队反思迭代过程并提出改进措施的机会.回顾会是团队成员共同进行的协作活动,让团队成员跟进并落实改进措施,使团队在下一个冲刺中更高效,这是相当重要的.   我们给出了回顾会的 ...

  10. centos7.x 安装系统/配置网络/设置主机名

    1.安装系统     系统的安装就不多说了,自行查找百度,如:https://www.cnblogs.com/wcwen1990/p/7630545.html   2.配置网络(局域网上网) 修改配置 ...