Problem

Description

给出 \(n\) 个物品,第 \(i\) 个物品体积为 \(a_i\) 。

对于每个体积 \(V\) ,求选出 \(3\) 个物品,体积之和为 \(V\) 的方案总数。

选择顺序不同算同一种方案。

Range

\(n\) 保证不会读入到 \(TLE\) , \(a_i\le 4 \times 10^4\) 。

Algorithm

多项式,生成函数。

Mentality

设生成函数 \(A(x)\) 为只选择一个物品的生成函数。其中 \([x^m]A(x)\) 的系数代表了体积 \(m\) 有多少种选法。

同理设 \(B(x)\) 为选择两个相同物品的生成函数,设 \(C(x)\) 为选择三个相同物品的生成函数。

则对于最后的答案而言:

若选择的 \(3\) 个物品互不相同,则方案数为:

\[\frac{A^3(x)-3B(x)A(x)+2C(x)}{6}
\]

因为根据容斥,\(A^3(x)\) 等于所有选择三个物品的方案数,\(B(x)A(x)\) 则是所有形如 \((a, a, b)\) 的方案数,由于这种方案在 \(A^3(x)\) 会出现三次,所以要乘 \(3\) ,然后对于所有 \((a,a,a)\) ,也即生成函数 \(C(x)\) 在 \(B(x)A(x)\) 中出现了 \(3\) 次,但实际上在 \(A^3(x)\) 只会被计算一次,所以还要加回 \(2\) 个来。

若选择 \(2\) 个物品,那么方案为:

\[\frac{A^2(x)-B(x)}{2}
\]

这个很好理解。

选择一个物品的方案自然就是 \(A(x)\) 了。

\(FFT\) 即可。

Code

#include <cmath>
#include <complex>
#include <cstdio>
#include <iostream>
using namespace std;
#define LL long long
#define cp complex<double>
#define inline __inline__ __attribute__((always_inline))
inline LL read() {
LL x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') w = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
} const int Max_n = 4e5 + 5, Ml = 1.2e5;
const double pi = acos(-1);
cp ans[Max_n], A[Max_n], B[Max_n], C[Max_n]; namespace Input {
void main() {
int n = read();
for (int i = 1, x; i <= n; i++)
x = read(), A[x] += 1, B[x * 2] += 1, C[x * 3] += 1;
}
} // namespace Input namespace Solve {
int bit, len, rev[Max_n];
void init() {
int bit = log2(Ml + 1) + 1;
len = 1 << bit;
for (int i = 0; i < len; i++)
rev[i] = rev[i >> 1] >> 1 | ((i & 1) << (bit - 1));
}
void dft(cp *f, int t) {
for (int i = 0; i < len; i++)
if (i < rev[i]) swap(f[i], f[rev[i]]);
for (int l = 1; l < len; l <<= 1) {
cp Wn(cos(t * pi / (double)l), sin(t * pi / (double)l));
for (int i = 0; i < len; i += (l << 1)) {
cp Wnk(1, 0);
for (int k = i; k < i + l; k++, Wnk *= Wn) {
cp x = f[k], y = f[k + l] * Wnk;
f[k] = x + y, f[k + l] = x - y;
}
}
}
}
void main() {
init();
dft(A, 1), dft(B, 1), dft(C, 1);
for (int i = 0; i < len; i++) {
ans[i] = (A[i] * A[i] * A[i] - A[i] * B[i] * 3.0 + 2.0 * C[i]) / 6.0;
ans[i] += (A[i] * A[i] - B[i]) / 2.0 + A[i];
}
dft(ans, -1);
for (int i = 0; i <= Ml; i++) ans[i] /= (double)len;
for (int i = 0; i <= Ml; i++) {
LL Ans = (LL)(ans[i].real() + 0.5);
if (Ans) printf("%d %lld\n", i, Ans);
}
}
} // namespace Solve int main() {
Input::main();
Solve::main();
}

【BZOJ 3771】Triple的更多相关文章

  1. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  2. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

  3. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  4. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  5. LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego

    [bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...

  6. 【BZOJ】【3771】Triple

    生成函数+FFT Orz PoPoQQQ 这个题要算组合的方案,而且范围特别大……所以我们可以利用生成函数来算 生成函数是一个形式幂级数,普通生成函数可以拿来算多重集组合……好吧我承认以上是在瞎扯→_ ...

  7. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  8. 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description ...

  9. 【BZOJ 2132】圈地计划 && 【7.22Test】计划

    两种版本的题面 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土 ...

随机推荐

  1. PIC18F45K80串口1和串口2异步收发通信实例

    PIC18F45K80串口1和串口2异步收发通信实例 一:配置串口1初始化函数 首先打开技术手册,查看异步串口的操作流程以及配置. 需要将串口对应引脚的方向寄存器设置为输入

  2. NTP服务编译安装报错:/usr/bin/ld: cannot find –lcap

    [root@localhost local]# find / -name "*libcap.so*" [root@localhost ntp-4.2.8p13]# cd /usr/ ...

  3. Virtualbox修改虚拟机分配内存的大小

    起因:因为虚拟机刚开始分配的内存太小,导致太卡, 解决方法:修改虚拟机分配内存的大小 方法一:必须在关闭ubuntu的前提下进行,否则无法修改 点击设置 系统选项 主板中的内存大小 之后开启即可 方法 ...

  4. Chapter 02—Creating a dataset(Part1)

    一. 数据集 1. 在R语言中,进行数据分析的第一步是创建一个包含待研究数据并且符合要求的数据集. · 选择装数据的数据结构 · 把数据装入数据结构中 2. 理解数据集 (1)数据集通常是矩形的数据列 ...

  5. C语言|博客作业11

    问题 回答 这个作业属于哪个课程 C语言程序设计ll 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/SE2019-2/homework/10127 我在 ...

  6. 关于jsp页面的复选框(checkbox)取值的获取问题

    复选框的取值问题可以使用js和jQuery来获取: jQuery API : each(callback) :以每一个匹配的元素作为上下文来执行一个函数. :checked :匹配所有选中的被选中元素 ...

  7. IDEA IntelliJ/ DataGrip 修改自动补全快捷键

    系统默认的是Tab键,个人喜欢用空格键作为自动补全键,设置方法如下 Setting-->Keymap-->Editor Actions:Choose Lookup Item Replace ...

  8. PHP自动发红包代码示例

    <?php header('Content-type:text'); define("TOKEN", "weixin"); $wechatObj = ne ...

  9. Oracle SCN 详解

    一.简介 scn,system change number 在某个时间点定义数据库已提交版本的时间戳标记,Oracle为每个已提交事务分配一个唯一的scn,scn值是对数据库进行更改的逻辑时间点.sc ...

  10. CentOS下永久修改主机名

    永久修改主机名 [root@centos7 ~]# vim /etc/hostname 打开之后将原来的名字改成你想换的名字 [root@centos7 ~]# cat /etc/hostname 查 ...