【素数的判定-从暴力到高效】-C++
今天我们来谈一谈素数的判定。
对于每一个OIer来说,在漫长的练习过程中,素数不可能不在我们的眼中出现,那么判定素数也是每一个OIer应该掌握的操作,那么我们今天来分享几种从暴力到高效的判定方法。
1.直观判断法
因为这种方法其实就是我们平常所说的暴力法。根据素数的定义,不能被2~n-1之内的数整除的整数n就被称为素数。所以我们从2跑到n-1,每次取模判断即可,这是最直观的一种方法,代码如下:
bool isPrime_1(int num)
{
int tmp=num-1;
for(int i=2;i<=tmp;i++)
if(num%i==0)
return 0;
return 1;
}
2.直观判断优化法
上述判断方法,明显存在效率极低的问题。对于每个数n,其实并不需要从2判断到n-1,我们知道,一个数若可以进行因数分解,那么分解时得到的两个数一定是一个小于等于sqrt(n),一个大于等于sqrt(n),据此,上述代码中并不需要遍历到n-1,遍历到sqrt(n)即可,因为若sqrt(n)左侧找不到约数,那么右侧也一定找不到约数!所以从2跑到sqrt(n)就可以了。代码如下:
bool isPrime_2(int num)
{
int tmp=sqrt(num);
for(int i=2;i<=tmp;i++)
if(num%i==0)
return 0;
return 1;
}
3.另一种方法(没想名字)
这个方法我也忘记是在哪一篇博客上看到过的了,如果博主看到了联系我来补版权引用
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;
证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
明显可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里要注意的一点是,在6的倍数相邻两侧并不一定就是质数。
此时判断质数可以以6为单位快进,即将方法(2)循环中i++步长加大为6,加快判断速度,原因是,假如要判定的数为n,则n必定是6x-1或6x+1的形式,对于循环中6i-1,6i,6i+1,6i+2,6i+3,6i+4,其中如果n能被6i,6i+2,6i+4整除,则n至少得是一个偶数,但是6x-1或6x+1的形式明显是一个奇数,故不成立;另外,如果n能被6i+3整除,则n至少能被3整除,但是6x能被3整除,故6x-1或6x+1(即n)不可能被3整除,故不成立。综上,循环中只需要考虑6i-1和6i+1的情况,即 循环的步长可以定为6,每次判断循环变量k和k+2的情况即可。
代码实现也很简单,不过需要注意的是有两种情况需要特判:
1.这个数是1,需要返回false;
2.这个数是2或3,需要返回true;
其他的按照上面的思路打出来就对了,代码如下:
bool isPrime_3(int num)
{
if(num==1)
return 0;
if(num==2||num==3)
return 1;
if(num%6!=1&&num%6!=5)
return 0;
int tmp=sqrt(num);
for(int i=5;i<=tmp;i+=6)
if(num%i==0||num%(i+2)==0)
return 0;
return 1;
}
接下来来测试一下用时;
注意:下面的用时是指从1~n分别判定是不是素数,不是判定一次!
那么就先把数据范围调到40W;
运行结果:

很明显,方法1实在太慢了!但是!虽然方法2已经很快速了,但耗时依然是方法3的三倍多!足以证明第三种方法的快速。
那接下来单独比较方法2和方法3,把n调到1000w试试、
运行结果:

数据到了1000w的时候,方法3完全展示出了它的优势,这种用时在判定素数的方法中是非常节省用时得了。
看懂了上面的方法,分别用着去试一下过这道题目:
ov.
【素数的判定-从暴力到高效】-C++的更多相关文章
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 『素数 Prime判定和线性欧拉筛法 The sieve of Euler』
素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我 ...
- Problem Description——用c语言实现素数的判定
Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数. Inp ...
- POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19895 ...
- hdu 1431 素数回文(暴力打表,埃托色尼筛法)
这题开始想时,感觉给的范围5 <= a < b <= 100,000,000太大,开数组肯定爆内存,而且100000000也不敢循环,不超时你打我,反正我是不敢循环. 这题肯定得打表 ...
- code vs1706 求合数和(数论 素数的判定)
1706 求合数和 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 查看运行结果 题目描述 Description 用户输入一个数,然后输出 ...
- code vs1436 孪生素数 2(数论+素数的判定)
1436 孪生素数 2 时间限制: 2 s 空间限制: 1000 KB 题目等级 : 白银 Silver 题解 查看运行结果 题目描述 Description 如m=100,n=6 则 ...
- 【素数判定/筛法进阶算法】-C++
今天我们来谈一谈素数的判定/筛法. 对于每一个OIer来说,在漫长的练习过程中,素数不可能不在我们的眼中出现,那么判定/筛素数也是每一个OIer应该掌握的操作,那么我们今天来分享几种从暴力到高效的判定 ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
随机推荐
- 微信小程序把玩(十一)icon组件
原文:微信小程序把玩(十一)icon组件 这些是提供的所支持的图标样式,根据需求在此基础上去修改大小和颜色. 主要属性: 使用方式: wxml <!--成功图标--> <icon t ...
- clipboard.js在剪切中的使用
目前只是对文字的复制. 下面的代码解释: 1.html 需要添加data-clipboard="copy"和data-clipboard-target="对象选择器&qu ...
- How To Compile Qt with Visual Studio
How To Compile Qt with Visual Studio FEBRUARY 1, 2011 This post is a step-by-step guide on how to co ...
- Delphi 项目失败的总结
随着项目的失败,这些天一直在总结失败的原因,到底是为什么? 一.技术层面 1.少用指针类型,多用类. 虽然指针类型能有效的节约内存和加快运行速度,但指针远没有类来得 ...
- Java实现Qt的SIGNAL-SLOT机制(保存到Map中,从而将它们关联起来,收到信号进行解析,最后反射调用)
SIGNAL-SLOT是Qt的一大特色,使用起来十分方便.在传统的AWT和Swing编程中,我们都是为要在 监听的对象上添加Listener监听器.被监听对象中保存有Listener的列表,当相关事件 ...
- 再谈Delphi关机消息拦截 -- 之控制台程序 SetConsoleCtrlHandler(控制台使用回调函数拦截,比较有意思)
这里补充一下第一篇文章中提到的拦截关机消息 Delphi消息拦截:http://blog.csdn.net/cwpoint/archive/2011/04/05/6302314.aspx 下面我再介绍 ...
- 事务 ( 进程 ID 60) 与另一个进程被死锁在锁资源上,并且已被选作死锁牺牲品
Select * FROM [TableName] With(NoLock) .....
- centos 部署 asp.net core Error -99 EADDRNOTAVAIL address not available解决
centos7.3上部署 asp.net core 错误如下: Hosting environment: Production Content root path: /home/netcore Now ...
- 文件夹管理工具(MVC+zTree+layer)
文件夹管理工具(MVC+zTree+layer)(附源码) 写在前 之前写了一篇关于 文件夹与文件的操作的文章 操作文件方法简单总结(File,Directory,StreamReader,St ...
- bootstrap模态框篇【遇到的问题】
<div class="modal fade" tabindex="-1" role="dialog"> <div cl ...