P3126 [USACO15OPEN]回文的路径Palindromic Paths

看到这题题解不多,蒟蒻便想更加通俗易懂地分享一点自己的心得,欢迎大佬批评指正_

像这种棋盘形的两边同时做的dp还有

P1006 传纸条,

P1004 方格取数,

T35377 大教室中传纸条

一、思路改进

对于这种题目最暴力的方法无非是分别枚举左上角和右下角两点坐标

f[ i ][ j ][ k ][ l ] = f[ i-1 ][ j ][ k+1 ][ l ] + f[ i-1 ][ j ][ k ][ l+1 ] + f[ i ][ j-1 ][ k+1 ][ l ] + f[ i ][ j-1 ][ k ][ l+1 ]

一起往中间走,即当两个点重合时便有了路径——O(n^4),像这种数据较大的题会爆

于是便有了新的思路,由于两点是一起走的,步数相同,所以可以枚举步数,又因为横纵坐标之和等于所走路径长+1(横纵坐标会重合一点,可以看下图理解),所以只需枚举两点的横坐标(j,k)就可以求出两点的纵坐标

1 2 3 4 5
1 左上角 E
2 D
3 C
4 B
5 A 右下角

i表示步数(注:左上角和右下角只有一种走法,我们可以从第二步开始走,又因为横纵坐标重合一点,为了使横坐标+纵坐标=i,我们可以从3开始枚举

上图字母是路径长为5,i(所枚举的步数)为5+1=6的情况

设j为左边点的横坐标(纵坐标为i-j),k为右边点所走路径的竖直长【如上图点A,枚举到它时k为1,横坐标为n-(i-k)+1=n-i+k+1=5-6+1+1=1,纵坐标为n-k+1=5-1+1=5】

即f(i,j,k)=f(i-1,j,k)+f(i-1,j-1,k)+f(i-1,j,k-1)+f(i-1,j-1,k-1)【j-1,而i不变,说明点的纵坐标+1,其实这个式子与上面暴力的式子是一样的】

二、空间优化

然而,这题数据范围到了500,如果开500^3的数组会MLE,考虑到每次状态转移只需用到f(i-1,j,k),可以用滚动数组优化空间

逆序枚举j、k【f[j][k]=f[j][k]+f[j-1][k-1]+f[j-1][k]+f[j][k-1]等式左侧步数为i,而右侧其实是上次枚举的状态,步数为i-1】(与01背包的滚动数组优化同理)即可避免覆盖还未转移的状态。

三、代码

只有两点字母相同时才能走,因此当两点字母不同时方案数为0,否则为每个可以走过来的状态的方案数之和

具体细节可以在代码中进一步理解

#include<iostream>
#define rint register int
using namespace std;
char a[501][501];
int n;
long long f[501][501],ans;
int main() {
cin>>n;
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)
cin>>a[i][j];
if (a[1][1]!=a[n][n]) {
cout<<0;
return 0;
}//如果左上角和右下角字母不同则无解
f[1][1]=1;//当两点分别处于左上角和右下角时方案为1
for (rint i=3; i<=n+1; i++)
for (rint j=i-1; j>=1; j--)
for (rint k=i-1; k>=1; k--) {
if (a[j][i-j]==a[n-i+k+1][n-k+1])//(用j,k分别求出所对应的横纵坐标)此两点字母是否相同?
f[j][k]=(f[j][k]+f[j-1][k-1]+f[j-1][k]+f[j][k-1])%1000000007;
else f[j][k]=0;//不相同则方案为0
}
for (int i=1; i<=n; i++)//统计所有方案数
ans=(ans+f[i][i])%1000000007;//当j=k说明两点重合
cout<<ans;
}

题解 P3126 【[USACO15OPEN]回文的路径Palindromic Paths】的更多相关文章

  1. [USACO15OPEN]回文的路径Palindromic Paths

    [USACO15OPEN]回文的路径Palindromic Paths 题目描述 Farmer John's farm is in the shape of an N \times NN×N grid ...

  2. [USACO15OPEN]回文的路径Palindromic Paths 2.0版

    题目描述 农夫FJ的农场是一个N*N的正方形矩阵(2\le N\le 5002≤N≤500),每一块用一个字母作标记.比如说: ABCD BXZX CDXB WCBA 某一天,FJ从农场的左上角走到右 ...

  3. 洛谷P1206 [USACO1.2]回文平方数 Palindromic Squares

    P1206 [USACO1.2]回文平方数 Palindromic Squares 271通过 501提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有 ...

  4. [译+改]最长回文子串(Longest Palindromic Substring) Part II

    [译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindro ...

  5. [译]最长回文子串(Longest Palindromic Substring) Part I

    [译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...

  6. 领扣-5 最长回文子串 Longest Palindromic Substring MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  7. USACO 回文的路径

    传送门 这道题和传纸条在某些方面上非常的相似.不过这道题因为我们要求回文的路径,所以我们可以从中间一条大对角线出发去向两边同时进行DP. 这里就有了些小小的问题.在传纸条中,两个路径一定是同时处在同一 ...

  8. 洛谷 P1206 [USACO1.2]回文平方数 Palindromic Squares

    P1206 [USACO1.2]回文平方数 Palindromic Squares 题目描述 回文数是指从左向右念和从右向左念都一样的数.如12321就是一个典型的回文数. 给定一个进制B(2< ...

  9. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

随机推荐

  1. Android零基础入门第74节:Activity启动和关闭

    上一期我们学习了Activity的创建和配置,当时留了一个悬念,如何才能在默认启动的Activity中打开其他新建的Activity呢?那么本期一起来学习如何启动和关闭Activity. 一.概述 经 ...

  2. window8 飘带与页面切换效果

    演示效果如下 用鼠标点击滑动试试就能看到效果了 ^_^ iscroll 不仅可以做到自然滚动条的效果,看官方文档还可以用来做页面切换的效果,很好很强大. 所以我结合流行的飘带元素做了个简单的例子.. ...

  3. DI 容器实务建议

    整理一些有关使用 DI 容器的一些建议事项,主要的参考数据源是 Jimmy Board 的文章:Container Usage Guidelines. 1.容器设定 避免对同一个组件(DLL)重复扫描 ...

  4. 一些Windows API导致的Crash以及使用问题总结(API的AV失败,可以用try catch捕捉后处理)

    RegQueryValueEx gethostbyname/getaddrinfo _localtime64 FindFirstFile/FindNextFile VerQueryValue Crea ...

  5. es6基本语法,vue基本语法

    一.es6基本语法 0.es6参考网站 http://es6.ruanyifeng.com/#README 1.let 和 const (1)const特点: 只在局部作用域起作用 不存在变量提升 不 ...

  6. SYN5301型 毫秒表时间检定仪

       SYN5301型  毫秒表时间检定仪 频率记录仪时间记录仪时间频率信号的精密测量使用说明视频链接; http://www.syn029.com/h-pd-76-0_310_6_-1.html 请 ...

  7. java设计模式-单例(singleton)

    单例模式,是一种常用的软件设计模式.在它的核心结构中只包含一个被称为单例的特殊类.通过单例模式可以保证系统中,应用该模式的类一个类只有一个实例.即一个类只有一个对象实例 如何保证对象唯一性呢? 思想: ...

  8. Yolov3代码分析与训练自己数据集

    现在要针对我们需求引入检测模型,只检测人物,然后是图像能侧立,这样人物在里面占比更多,也更清晰,也不需要检测人占比小的情况,如下是针对这个需求,用的yolov3-tiny模型训练后的效果. Yolov ...

  9. jvm(4)---垃圾回收(哪些对象可以被回收)

    1.java堆中几乎放着所有对象的实例,那么什么样子的对象才是可以被回收的呢? 1.1.引用计数法: 给对象添加一个引用计数器,当有地方引用的时候,计数器就+1,引用失效就-1:任何时候当计数器为0, ...

  10. 18 HTML标签以及属性全

    基本结构标签: <HTML>,表示该文件为HTML文件 <HEAD>,包含文件的标题,使用的脚本,样式定义等 <TITLE>---</TITLE>,包含 ...