题解 P3126 【[USACO15OPEN]回文的路径Palindromic Paths】
P3126 [USACO15OPEN]回文的路径Palindromic Paths
看到这题题解不多,蒟蒻便想更加通俗易懂地分享一点自己的心得,欢迎大佬批评指正_
像这种棋盘形的两边同时做的dp还有
P1006 传纸条,
P1004 方格取数,
T35377 大教室中传纸条
一、思路改进
对于这种题目最暴力的方法无非是分别枚举左上角和右下角两点坐标
(f[ i ][ j ][ k ][ l ] = f[ i-1 ][ j ][ k+1 ][ l ] + f[ i-1 ][ j ][ k ][ l+1 ] + f[ i ][ j-1 ][ k+1 ][ l ] + f[ i ][ j-1 ][ k ][ l+1 ])
一起往中间走,即当两个点重合时便有了路径——O(n^4),像这种数据较大的题会爆
于是便有了新的思路,由于两点是一起走的,步数相同,所以可以枚举步数,又因为横纵坐标之和等于所走路径长+1(横纵坐标会重合一点,可以看下图理解),所以只需枚举两点的横坐标(j,k)就可以求出两点的纵坐标
| 1 | 2 | 3 | 4 | 5 | |
|---|---|---|---|---|---|
| 1 | 左上角 | E | |||
| 2 | D | ||||
| 3 | C | ||||
| 4 | B | ||||
| 5 | A | 右下角 |
i表示步数(注:左上角和右下角只有一种走法,我们可以从第二步开始走,又因为横纵坐标重合一点,为了使横坐标+纵坐标=i,我们可以从3开始枚举)
上图字母是路径长为5,i(所枚举的步数)为5+1=6的情况
设j为左边点的横坐标(纵坐标为i-j),k为右边点所走路径的竖直长【如上图点A,枚举到它时k为1,横坐标为n-(i-k)+1=n-i+k+1=5-6+1+1=1,纵坐标为n-k+1=5-1+1=5】
即f(i,j,k)=f(i-1,j,k)+f(i-1,j-1,k)+f(i-1,j,k-1)+f(i-1,j-1,k-1)【j-1,而i不变,说明点的纵坐标+1,其实这个式子与上面暴力的式子是一样的】
二、空间优化
然而,这题数据范围到了500,如果开500^3的数组会MLE,考虑到每次状态转移只需用到f(i-1,j,k),可以用滚动数组优化空间
逆序枚举j、k【f[j][k]=f[j][k]+f[j-1][k-1]+f[j-1][k]+f[j][k-1]等式左侧步数为i,而右侧其实是上次枚举的状态,步数为i-1】(与01背包的滚动数组优化同理)即可避免覆盖还未转移的状态。
三、代码
只有两点字母相同时才能走,因此当两点字母不同时方案数为0,否则为每个可以走过来的状态的方案数之和
具体细节可以在代码中进一步理解
#include<iostream>
#define rint register int
using namespace std;
char a[501][501];
int n;
long long f[501][501],ans;
int main() {
cin>>n;
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)
cin>>a[i][j];
if (a[1][1]!=a[n][n]) {
cout<<0;
return 0;
}//如果左上角和右下角字母不同则无解
f[1][1]=1;//当两点分别处于左上角和右下角时方案为1
for (rint i=3; i<=n+1; i++)
for (rint j=i-1; j>=1; j--)
for (rint k=i-1; k>=1; k--) {
if (a[j][i-j]==a[n-i+k+1][n-k+1])//(用j,k分别求出所对应的横纵坐标)此两点字母是否相同?
f[j][k]=(f[j][k]+f[j-1][k-1]+f[j-1][k]+f[j][k-1])%1000000007;
else f[j][k]=0;//不相同则方案为0
}
for (int i=1; i<=n; i++)//统计所有方案数
ans=(ans+f[i][i])%1000000007;//当j=k说明两点重合
cout<<ans;
}
题解 P3126 【[USACO15OPEN]回文的路径Palindromic Paths】的更多相关文章
- [USACO15OPEN]回文的路径Palindromic Paths
[USACO15OPEN]回文的路径Palindromic Paths 题目描述 Farmer John's farm is in the shape of an N \times NN×N grid ...
- [USACO15OPEN]回文的路径Palindromic Paths 2.0版
题目描述 农夫FJ的农场是一个N*N的正方形矩阵(2\le N\le 5002≤N≤500),每一块用一个字母作标记.比如说: ABCD BXZX CDXB WCBA 某一天,FJ从农场的左上角走到右 ...
- 洛谷P1206 [USACO1.2]回文平方数 Palindromic Squares
P1206 [USACO1.2]回文平方数 Palindromic Squares 271通过 501提交 题目提供者该用户不存在 标签USACO 难度普及- 提交 讨论 题解 最新讨论 暂时没有 ...
- [译+改]最长回文子串(Longest Palindromic Substring) Part II
[译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindro ...
- [译]最长回文子串(Longest Palindromic Substring) Part I
[译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...
- 领扣-5 最长回文子串 Longest Palindromic Substring MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- USACO 回文的路径
传送门 这道题和传纸条在某些方面上非常的相似.不过这道题因为我们要求回文的路径,所以我们可以从中间一条大对角线出发去向两边同时进行DP. 这里就有了些小小的问题.在传纸条中,两个路径一定是同时处在同一 ...
- 洛谷 P1206 [USACO1.2]回文平方数 Palindromic Squares
P1206 [USACO1.2]回文平方数 Palindromic Squares 题目描述 回文数是指从左向右念和从右向左念都一样的数.如12321就是一个典型的回文数. 给定一个进制B(2< ...
- Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)
Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...
随机推荐
- cairo 图形库
简介 提到cairo,估计很少知道这还是一个图形库的名字(http://cairographics.org),Linux的两大流行桌面环境KDE和Gnome,其对应的基础组件是QT和GTK+,相对于框 ...
- 移动Web - 响应式布局开篇
用到的工具: FireFox浏览器 Sublime Text 2 响应式布局定义: 2010年,Ethan Marcotte提出,可查看原文: 通俗地讲就是:百份比布局,根据不同设备显示不同布局: 这 ...
- qt源码的submodules要怎么使用
请问我下载了submodules里面的源代码,怎么使用?http://download.qt.io/official_releases/qt/5.7/5.7.1/submodules/如下载了qweb ...
- Angular4初学
[1].在学习Angular4之前,首先要了解一些typescript的知识. 以下是我的总结:https://gitee.com/FangXiaoQi123/angularJSCeShi/blob/ ...
- SYN591型 多功能数字面板表
SYN591型 多功能数字面板表 多功能数字面板表数字面板表使用说明视频链接: http://www.syn029.com/h-pd-248-0_310_44_-1.html 请将此链接复制到浏 ...
- Spring Cloud Stream整合RabbitMQ
简介 Spring Cloud Stream是一个构建消息驱动微服务的框架,应用程序通过input(相当于consumer).output(相当于producer)来与Spring Cloud Str ...
- 对SpringMVC架构进行工程拆分遇到的问题总结
经过一个月的开发,一个单一的SpringMVC教育类创业项目正式上线,随着时间的推移,业务流量逐渐增大,最近对这个单一的工程从零进行SOA分布式改造,改造包括dubbo改造,集成化部署.高可用集群,负 ...
- oh-my-zsh自定义配置
oh-my-zsh主题配置 默认的zsh主题robbyrussell已经很棒了, 简洁高效, 能很好的显示git的相关信息, 比如branch信息, 修改, 删除, 添加等操作. 但是多用户的话就不能 ...
- 44 | 测试先行:测试驱动开发(TDD)
- Rstudio调用plot()函数时,出现错误的处理方法
按照书上的例子敲出代码后,发现Rstudio无法识别C盘user文件夹下的中文用户名.如下图所示: 按照网上的做法,尝试修改计算机user下的用户名,没修改成功. 另一种做法是在plot()函数前面加 ...