1 A*算法

A*算法在人工智能中是一种典型的启发式搜索算法,启发中的估价是用估价函数表示的:

其中f(n)是节点n的估价函数,g(n)表示实际状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。另外定义h'(n)为n到目标节点最佳路径的实际值。如果h'(n)≥h(n)则如果存在从初始状态走到目标状态的最小代价的解,那么用该估价函数搜索的算法就叫A*算法。

2 第K最短路的算法

我们设源点为s,终点为t,我们设状态f(i)的g(i)为从s走到节点i的实际距离,h(i)为从节点i到t的最短距离,从而满足A*算法的要求,当第K次走到f(n-1)时表示此时的g(n-1)为第K最短路长度。C++代码如下:()

CDOJ找的一道例题:(模板题)这里面用到SPFA算法(这是中国人创造的,用于求单源最短路的一种算法,关于SFPA时间复杂度的问题,,,不确定性,有时很大,有时很小,emmmm,貌似外国人不太认可,)

Time Limit: 10000 MS     Memory Limit: 256 MB

Submit Status

6·1即将来临,游乐园推出了新的主题活动,雨过天晴,帆宝乐爷童心未泯,准备一探究竟。

兴奋的他们一入园便和孩子们打成一片,不知不觉便走散了。

当他们意识到的时候,只能通过手机来确认对方的位置。

他们当然想尽快找到对方,然而由于孩子们实在是太多,只能选择距离稍远的但是游客稀少的路会合。

帆宝希望找到第kk短的路径,这条路径是他认为的幸运路径。

帆宝迫切地想知道该条路径的长度,而乐于助人的你也一定会帮助她的。

Input

第一行三个整数n,m,kn,m,k,分别表示游乐园的景点数目、景点之间的道路数目以及路径长度从小到大排列时希望选择的序号。

第二行两个整数S,TS,T,分别表示帆宝乐爷所在景点的编号。

接下来mm行,每行三个整数u,v,wu,v,w,表示编号为uu和vv的景点之间有一条长度为ww的单向通路。

1≤n≤1000,0≤m≤100000,1≤k≤1000,1≤S,T,u,v≤N,1≤w≤1001≤n≤1000,0≤m≤100000,1≤k≤1000,1≤S,T,u,v≤N,1≤w≤100

Output

第一行一个整数xx,表示所选路径的长度

无解输出−1−1

Sample input and output

Sample Input Sample Output
3 3 2
1 2
1 2 2
1 3 4
3 2 1
5

题意:给你起点,终点以及要求的第K短路;

题解:首先将有向图以终点T为起点,计算出T到每一个边的最短距离(到第i条边dis[i]),

然后建立一个优先队列,从优先队列中弹出f(p)最小的点p,如果p就是T,则T的次数加一。如果当前次数等于K则当前路即为地K小

的路,,否则,,便利每一个p 所连的边,将其扩张出的到p临接点的信息加入到优先队列中;

AC代码:

 #include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int AX = 1e5+;
const int MAXN = 1e3+;
int n,m,k;
int s,t;
int tot;
int retot;
struct edge{
int to,w;
int next1;
}G[AX],RG[AX]; struct Node{
int v;
int f,h,g;
bool operator < (const Node &a) const{ return f==a.f? g>a.g : f>a.f; }
}; int dis[MAXN];
int head[MAXN];
int rehead[AX];
int vis[MAXN]; void add_edge(int u,int v,int c)
{
G[tot].to=v;
G[tot].w=c;
G[tot].next1=head[u];
head[u]=tot++; RG[retot].to=u;
RG[retot].w=c;
RG[retot].next1=rehead[v];
rehead[v]=retot++;
}
void SPFA()
{
for(int i=;i<=n;i++) dis[i]=INF;
dis[t]=;
queue<int> Q;
Q.push(t);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=rehead[u];i!=-;i=RG[i].next1)
{
int v=RG[i].to ;
int w=RG[i].w ;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
Q.push(v);
}
}
}
} int Astar(Node a)
{
memset(vis,,sizeof(vis));
if(dis[s]==INF) return -;//如果没有与S相连的点
if(s==t) k++;
priority_queue<Node> Q;
Q.push(a);
while(!Q.empty())
{
Node tmp=Q.top();
Q.pop();
int v=tmp.v;
vis[v]++;
if(vis[t]==k) return tmp.g;
for(int i=head[v];i!=-;i=G[i].next1)
{
Node p;
p.v=G[i].to;
p.h=dis[G[i].to];
p.g=tmp.g+G[i].w;
p.f=p.g+p.h;
Q.push(p);
}
}
return -;
} int main()
{
tot=;
retot=;
memset(head,-,sizeof head);
memset(rehead,-,sizeof rehead);
scanf("%d%d%d",&n,&m,&k);
scanf("%d%d",&s,&t);
int x,y,w;
for(int i=;i<m;i++)
{
scanf("%d%d%d",&x,&y,&w);
add_edge(x,y,w);
}
SPFA();
Node a;
a.v=s;
a.g=;
a.h=dis[s];
a.f=a.g+a.h;
int g=Astar(a);
printf("%d\n",g);
return ;
}

后面我还会更新出 关于启发式搜索的讲解,以及Dijkstra,,SPFA,Folyd这三种关于不同最短路问题讲解及例题分析。

越努力,越幸运!    加油!!!

A*算法在最短路问题的应用及其使用举例的更多相关文章

  1. 最短路问题的三种算法&模板

    最短路算法&模板 最短路问题是图论的基础问题.本篇随笔就图论中最短路问题进行剖析,讲解常用的三种最短路算法:Floyd算法.Dijkstra算法及SPFA算法,并给出三种算法的模板.流畅阅读本 ...

  2. 用Apache Ant在Weka中嵌入新算法

    本文将介绍一种新的添加新的算法到Weka中的方法,国内的论坛基本都是通过IDE(Eclipse或NetBeans)编译,详细教程请见上一篇博客.经研究,发现国外的网站很流行用Ant这个方法,教程奉上. ...

  3. 用Eclipse在Weka中嵌入新算法

    本文介绍添加一个新算法到Weka集成环境中的过程,并能在GUI中运行并显示其结果.想做到这一点有两种方法,一是用ANT命令生成新的weka.jar(稍后写教程),二是用IDE(Eclipse或NetB ...

  4. HDU--杭电--3790--最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  5. POJ 2472 106 miles to Chicago(Dijstra变形——史上最坑的最长路问题)

    题目链接 :http://poj.org/problem?id=2472 Description In the movie "Blues Brothers", the orphan ...

  6. java学会需要掌握的知识(来源网上。。)

    Java就业指导 2016-03-22 骆昊 程序人生 点击上方"程序人生"关注我们 想要成为合格的Java程序员或工程师到底需要具备哪些专业技能,面试者在面试之前到底需要准备哪些 ...

  7. C++拾遗

    1三个概念 字符串字面值是一串常量字符(是一个常量),字符串字面值常量用双引号括起来的零个或多个字符表示,为兼容C语言,C++中所有的字符串字面值都由编译器自动在末尾添加一个空字符.字符串字面值的类型 ...

  8. springMVC web项目 对访问数据库的用户名密码进行加密解密

    在使用springMVC开发web项目中,数据库的用户名,密码一般都是配置在.properties文件中 然后在通过.xml配置文件引入.properties的变量,例如 在config.proper ...

  9. Adaboost总结

    一.简介 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类.为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到 ...

随机推荐

  1. 每天3分钟操作系统修炼秘籍(14):IO操作和DMA、RDMA

    点我查看秘籍连载 I/O操作和DMA.RDMA 用户进程想要执行IO操作时(例如想要读磁盘数据.向磁盘写数据.读键盘的输入等等),由于用户进程工作在用户模式下,它没有执行这些操作的权限,只能通过发起对 ...

  2. PHP经典算法题

    1.百钱买百鸡 公鸡5文钱一只,母鸡3文钱一只,小鸡3只一文钱,用100文钱买一百只鸡,其中公鸡,母鸡,小鸡都必须要有,问公鸡,母鸡,小鸡要买多少只刚好凑足100文钱. 分析:估计现在小学生都能手工推 ...

  3. suseoj 1210: 会场安排问题 (贪心)

    1210: 会场安排问题 时间限制: 1 Sec  内存限制: 128 MB提交: 1  解决: 1[提交][状态][讨论版][命题人:liyuansong] 题目描述 假设要在足够多的会场里安排一批 ...

  4. Project Euler 62: Cubic permutations

    立方数\(41063625 (345^3)\)的各位数重新排列形成另外两个立方数\(6623104 (384^3)\)和\(66430125 (405^3)\).事实上,\(41063625\)是满足 ...

  5. Nginx服务器安装及配置解释

    nginx是高性能的轻量级web服务器. 特性: 1.http代理 2.反向代理 3.负载均衡 4.缓存机制 一,安装及启动(centos7,nginx 1.14.0) 1.下载 wget http: ...

  6. 全栈项目|小书架|微信小程序-登录及token鉴权

    小程序登录 之前也写过微信小程序登录的相关文章: 微信小程序~新版授权用户登录例子 微信小程序-携带Token无感知登录的网络请求方案 微信小程序开通云开发并利用云函数获取Openid 也可以通过官方 ...

  7. http_web_cache

    HTTP Web Cache 程序资源的访问具有局部性 时间局部性:一个被访问过的资源很有可能在近期被再次访问. 空间局部性:一个被访问过的资源,它的周边资源很有可能被访问到. 如何衡量缓存的有效性? ...

  8. Centos 6.x Openssh 升级 7.7p1 版本

    OpenSSH 升级 目前在一家金融公司上班,正好赶上金融公司各种暴雷,本人心里慌慌的. 然后就是金融公司要进行的最低的三级等保评测,各种修改系统安全,密码强度.WAF.防火墙等各种. 评测公司对我司 ...

  9. jitter()函数的使用

    jitter()函数:对数值向量添加一个小的噪音量. jitter(x,factor=1,amount=NULL) ·x:数值变量,需要加入噪音的数值向量: ·factor:数值型: ·amount: ...

  10. Beautifulsoup模块基础详解

    Beautifulsoup模块 官方中文文档 Beautifulsoup官方中文文档 介绍 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的 ...