loj6278 数列分块入门题2
题意:支持区间加,询问区间中元素排名
维护两个域。一个域维护原序列,一个域维护快内排序序列。
每次修改后更新快内排序序列。
修改时O(sqrt(n)log(sqrt(n)))
询问时O(sqrt(n)log(sqrt(n)))
大概是这个量级吧
#include <bits/stdc++.h>
using namespace std; int bl[],bla,a[],a0[],b[],bi[],n;
int t1,t2,t3,t4; void init() {
bla=sqrt(n);
for (int i=;i<=n;i++)
bl[i]=(i-)/bla+,
bi[i]=(i-)%bla+;
for (int l=;l<=n;l+=bla) {
for(int i=bl[l]*bla-bla+;i<=bl[l]*bla;i++)
a[i]=a0[i];
sort(a+bl[l]*bla-bla+,a+bl[l]*bla+);
}
} void add(int l,int r,int c){
if(bl[l]==bl[r]) {
for(int i=l;i<=r;i++)
a0[i]+=c;
for(int i=bl[l]*bla-bla+;i<=bl[l]*bla;i++)
a[i]=a0[i];
sort(a+bl[l]*bla-bla+,a+bl[l]*bla+);
}
else {
for(int i=l;i<=bl[l]*bla;i++)
a0[i]+=c;
for(int i=bl[l]*bla-bla+;i<=bl[l]*bla;i++)
a[i]=a0[i];
sort(a+bl[l]*bla-bla+,a+bl[l]*bla+);
for(int i=bl[r]*bla-bla+;i<=r;i++)
a0[i]+=c;
for(int i=bl[r]*bla-bla+;i<=bl[r]*bla;i++)
a[i]=a0[i];
sort(a+bl[r]*bla-bla+,a+bl[r]*bla+);
for(int i=bl[l]+;i<bl[r];i++)
b[i]+=c;
}
} int query(int l,int r,long long c){
int ans=;
if(bl[l]==bl[r]) {
for(int i=l;i<=r;i++)
ans+=(a0[i]<c-b[bl[l]]);
}
else {
for(int i=l;i<=bl[l]*bla;i++)
ans+=(a0[i]<c-b[bl[l]]);
for(int i=bl[r]*bla-bla+;i<=r;i++)
ans+=(a0[i]<c-b[bl[r]]);
for(int i=bl[l]+;i<bl[r];i++)
ans+=lower_bound(a+i*bla-bla+,a+i*bla+,c-b[i])-(a+i*bla-bla+);
}
return ans;
} void printblock(){
/*for(int i=1;i<=n/bla+(n%bla)?1:0;i++) {
printf("block %d : %d\n",i,b[i]);
printf(" a0: ");
for(int j=1;j<=bla;j++) printf("%d ",a0[i*bla-bla+j]);
printf("\n");
printf(" a: ");
for(int j=1;j<=bla;j++) printf("%d ",a[i*bla-bla+j]);
printf("\n");
}*/
} int main(){
ios::sync_with_stdio(false);
cin>>n;
for(int i=;i<=n;i++)
cin>>a0[i];
init();
printblock();
for(int i=;i<=n;i++) {
cin>>t1>>t2>>t3>>t4;
if(t1==){
add(t2,t3,t4);
}
else {
printf("%d\n",query(t2,t3,t4*t4));
}
printblock();
}
}
loj6278 数列分块入门题2的更多相关文章
- loj6277 数列分块入门题1
裸题分块. #include <bits/stdc++.h> using namespace std; ],b[],n,m,t1,t2,t3,t4,sq; int main(){ ios: ...
- [LOJ6278]数列分块入门 2
题目大意: 给你一个长度为$n(n\leq 50000)$的序列$A$,支持进行以下两种操作: 1.将区间$[l,r]$中所有数加上$c$: 2.询问区间$[l,r]$中小于$c^2$的数的个数.思路 ...
- [loj6278]数列分块入门2
做法1 以$K$为块大小分块,并对每一个块再维护一个排序后的结果,预处理复杂度为$o(n\log K )$ 区间修改时将整块打上标记,散块暴力修改并归并排序,单次复杂度为$o(\frac{n}{K}+ ...
- 题解——loj6278 数列分块入门2 (分块)
查询小于k的值 注意lower_bound一定要减去查找的起始位置得到正确的位置 调了快两天 淦 #include <cstdio> #include <algorithm> ...
- 数列分块入门九题(三):LOJ6283~6285
Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...
- 数列分块入门九题(二):LOJ6280~6282
Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...
- 数列分块入门九题(一):LOJ6277~6279
Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...
- LOJ6285 数列分块入门9(分块)
昨天对着代码看了一晚上 然后今天终于在loj上过了 数列分块入门9题撒花★,°:.☆( ̄▽ ̄)/$:.°★ . 然后相当玄学 块的大小调成\(\sqrt{n}\)会TLE,改成150就过了 啧 然后就 ...
- 数列分块入门1-9 By hzwer
声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...
随机推荐
- 【Android开发艺术探索】理解Window和WindowManager
个人博客: http://www.milovetingting.cn 理解Window和WindowManager Window表示一个窗口的概念,是一个抽象类,具体实现是PhoneWindow,可以 ...
- Android EditText不可编辑单行显示能滑动查看内容
遇到问题 有时为了节约界面控件,可以界面的美观,我们会使用单行显示 singleLine,如果使用 Enable = false 输入框文字呈现灰色,并且也无法操作. 想要实现的效果是,单行显示,不能 ...
- deepin系统修改IP地址记录
今天在配置软路由的时候需要设备有线网卡为静态地址,于是便按照如下方法进行修改: 1.备份网络配置文件: sudo cp /etc/network/interfaces /etc/netword/int ...
- App自动化测试环境搭建
只做记录和注意点,详细内容不做解释 环境:win+appium+夜神模拟器+python 需要用到的工具: 1.java JDK 2. node.js 3. Android SDK 4.Appium- ...
- 【STM32H7教程】第46章 STM32H7的ADC应用之DMA方式多通道采样
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第46章 STM32H7的ADC应用之DMA方式多 ...
- 0.96寸OLED显示屏驱动手册(SSD1306)
MCU IIC接口 IIC通信接口由从地址位SA0,IIC总线数据信号SDA(输出SDAout/D2和输入SDAin /D1)和IIC总线时钟信号SCL(D0).不管是数据线还是时钟线都需要连接上拉电 ...
- 【python基础语法】第6天作业练习题
''' 二.作业(每一道题封装成一个函数) 1.输出99乘法表,结果如下:(提示嵌套for循环,格式化输出) 2.有1 2 3 4 这四个数字,设计程序计算能组成多少个互不相同且无重复数字的3位数?分 ...
- OHEM论文笔记
目录 引言 Fast R-CNN设计思路 一.动机 二.现有方案hard negative mining 及其窘境 hard negative mining实现 窘境 设计思路 OHEM步骤: 反向传 ...
- 安装 mysqlclient 报 mysql_config not found
安装 mysqlclient 报 mysql_config not found raise EnvironmentError("%s not found" % (mysql_con ...
- H5网页布局+css代码美化
HTML5的结构化标签,对搜索引擎更友好 li 标签对不利于搜索引擎的收录,尽量少用 banner图片一般拥有版权,不需要搜索引擎收录,因此可以使用ul + li <samp></s ...