题目大意

将N个数分成M部分,使每部分的最大值与最小值平方差的和最小。

思路

首先肯定要将数列排序,每部分一定是取连续的一段,于是就有了方程

$\Large f(i,j)=min(f(i-1,k-1)+(a_j-a_k)^2)$

其中$f(i,j)$表示前$j$个数分成$i$部分的最小值

解法一.四边形不等式优化

设$w(i,j)=(a_j-a_i)^2$

方程变为$f(i,j)=min(f(i-1,k-1)+w(k,j))$

很容易想到四边形不等式优化

证明w满足四边形不等式

$w(i,j)-w(i+1,j)=(a_j-a_i)^2-(a_j-a_{i+1})^2=a_i^2-a_{i+1}^2+2*a_j*(a_{i+1}-a_i)$

因为$a_{i+1}-a_i\ge 0$

所以$w(i,j)-w(i+1,j)$关于j单调不减,即$w(i,j)-w(i+1,j)\le w(i,j+1)-w(i+1,j+1)$

所以$w(i,j)+w(i+1,j+1)\le w(i,j+1)+w(i+1,j)$

以下证明具体可参考POJ1160 Post Office

证明f满足四边形不等式

设$f_k(i,j)=f(i-1,k-1)+w(k,j)$

对于$\forall i\le i^{'}\le j\le j^{'}$,设$k=s(i,j^{'}),t=s(i^{'},j)$

1.如果$k\le t$

有$f(i,j)+f(i^{'},j^{'})\le f(i-1,k-1)+w(k,j)+f(i^{'}-1,t-1)+w(t,j^{'})$

$f(i,j)+f(i^{'},j^{'})\le f(i-1,k-1)+w(k,j^{'})+f(i^{'}-1,t-1)+w(t,j)$

即$f(i,j)+f(i^{'},j^{'})\le f(i,j^{'})+f(i^{'},j)$

2.如果$k\gt t$

则只需证$f(i-1,t-1)+f(i^{'}-1,k-1)\le f(i-1,k-1)+f(i^{'}-1,t-1)$即可

设$k_1=s(i-1,k-1),k_2=s(i-2,k_1-1)……k_n=s(i-n,k_{n-1}-1)$

$t_1=s(i^{'}-1,t-1),t_2=s(i^{'}-2,t_1-1)……t_n=s(i^{'}-n,t_{n-1}-1)$

如果$k_1\le t_1$,就用1去证明

否则,递归2证明直到求证$f(1,t_n-1)+f(i_{'}-i+1,k_n-1)\le f(1,k_n-1)+f(i_{'}-i+1,t_n-1)$

化简得$w(1,t_n-1)+w(t_{n+1},k_n-1)\le w(1,k_n-1)+w(t_{n+1},t_n-1)$

因为w满足四边形不等式所以$f(i,j)+f(i^{'},j^{'})\le f(i,j^{'})+f(i^{'},j)$

证明$f(i,j)$的决策$s(i,j)$是单调的

1.设$k=s(i,j)$,对于所有$t\le k$

有$w(t,j)+w(k,j+1)\le w(t,j+1)+w(k,j)$

两边同时加上$f(i,t-1)+f(i,k-1)$得$f_t(i,j)+f_k(i,j+1)\le f_k(i,j)+f_t(i,j+1)$

因为$f_t(i,j)\ge f_k(i,j)$,所以$f_k(i,j+1)\le f_t(i,j+1)$

所以$s(i,j)\le s(i,j+1)$

2.设$k=s(i,j)$,对于所有$t\le k$

有$f(i,t-1)+f(i+1,k-1)\le f(i+1,t-1)+f(i,k-1)$

两边同时加上$w(t,j)+w(k,j)$得$f_t(i,j)+f_k(i+1,j\le f_k(i,j)+f_t(i+1,j)$

因为$f_t(i,j)\ge f_k(i,j)$,所以$f_k(i+1,j)\le f_t(i+1,j)$

所以$s(i,j)\le s(i+1,j)$

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 10005
#define maxm 5005
int f[maxm][maxn],s[maxm][maxn],a[maxn];
void work(){
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",a+i);
sort(a+,a+n+);
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++)s[][i]=;
f[][]=;
for(int i=;i<=m;i++){
f[i][i]=;s[i][i]=i;s[i][n+]=n;
for(int j=n;j>i;j--){
for(int k=s[i-][j];k<=s[i][j+];k++){
if(f[i][j]>f[i-][k-]+(a[j]-a[k])*(a[j]-a[k])){
f[i][j]=f[i-][k-]+(a[j]-a[k])*(a[j]-a[k]);
s[i][j]=k;
}
}
}
}
printf("%d\n",f[m][n]);
}
int main(){
int t;scanf("%d",&t);
for(int i=;i<=t;i++)printf("Case %d: ",i),work();
return ;
}

解法二.斜率优化

若对于某个$f(i,j)$,$k$比$t$要优

那么$f(i-1,k-1)+(a_j-a_k)^2\le f(i-1,t-1)+(a_j-a_t)^2$

化简得$(f(i-1,k-1)+a_k^2-f(i-1,t-1)-a_t^2)/(2*(a_k-a_t))\le a_j$

然后就可以对每一个$i$分别用一次斜率优化$O(n)$得出$f$的值

可以用滚动数组优化空间

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 10005
#define inf 0x3fffffff
int f[][maxn],a[maxn],que[maxn],s,t,k;
int calc(int k,int i,int j){
if(a[i]==a[j])return inf;
return (f[k][i-]+a[i]*a[i]-f[k][j-]-a[j]*a[j]-)/((a[i]-a[j])<<)+;//ÏòÉÏÈ¡Õû
}
void insert(int k,int x){
while(s<t-&&calc(k,x,que[t-])<=calc(k,que[t-],que[t-]))t--;
que[t++]=x;
}
void work(){
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",a+i);
sort(a+,a+n+);
s=t=;que[t++]=;
for(int i=;i<=m;i++){
k=i&;f[k][i]=;
for(int j=i+;j<=n;j++){
while(s<t-&&calc(k^,que[s+],que[s])<=a[j])s++;
int x=que[s];
f[k][j]=f[k^][x-]+(a[j]-a[x])*(a[j]-a[x]);
}
s=t=;
for(int j=i+;j<=n;j++){
insert(k,j);
}
}
printf("%d\n",f[m&][n]);
}
int main(){
int t;scanf("%d",&t);
for(int i=;i<=t;i++)printf("Case %d: ",i),work();
return ;
}

HDU3480 Division——四边形不等式或斜率优化的更多相关文章

  1. [HDU3480] Division [四边形不等式dp]

    题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...

  2. hdu 3480 Division(四边形不等式优化)

    Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...

  3. [POJ1160] Post Office [四边形不等式dp]

    题面: 传送门 思路: dp方程实际上很好想 设$dp\left[i\right]\left[j\right]$表示前$j$个镇子设立$i$个邮局的最小花费 然后状态转移: $dp\left[i\ri ...

  4. HDU-3480 Division (四边形不等式优化DP)

    题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=mi ...

  5. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  6. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

  7. HDU3480 Division —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3480 Division Time Limit: 10000/5000 MS (Java/Others)    Memory ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

随机推荐

  1. kafka的消息组件

    kafka的组件的介绍 produer:消息的生产者,往topic当中生产消息 consumer:消息的消费者,从topic当中消费消息 broker:kafka的服务器 zookeeper:kafk ...

  2. python round, ceil, flooor

    round(num, n) 保留n位小数 round(80.23456, 2) : 80.23 round(100.000056, 3) : 100.0 round(-100.000056, 3) : ...

  3. HtmlCleanner结合xpath用法(转载)

    HtmlCleaner cleaner = new HtmlCleaner(); TagNode node = cleaner.clean(new URL("http://finance.s ...

  4. 使用Pyppeteer进行gmail模拟登录

    import asyncio import time from pyppeteer import launch async def gmailLogin(username, password, url ...

  5. Spring Cloud高级视频

    Spring Cloud高级视频 第一章 微服务架构概述 第二章 开始使用Spring Cloud实战微服务 第三章 服务提供者与服务消费者 第四章 服务发现与服务注册 第五章 使用Hystrix保护 ...

  6. 移动端dialog组件

    移动端dialog组件 dialogView是满足移动端下,用户自定义的dialog组件,API可扩展性强,使用便捷.现版本是基于jquery库编写的,在使用之前需要引入jquery库或者Zepto库 ...

  7. MySQL 05章_模糊查询和聚合函数

    在之前的查询都需要对查询的关机中进行“精确”.“完整”完整的输入才能查询相应的结果, 但在实际开发过程中,通常需要考虑用户可能不知道“精确”.“完整”的关键字, 那么就需要提供一种不太严格的查询方式, ...

  8. java 打印1到n之间的整数

    package java_day08; /* * 打印1-n之间的整数 * * 递归:方法体自己调用自己 */ public class DiGui { public static void main ...

  9. github代码推送

    git init // 初始化版本库 git add . // 添加文件到版本库(只是添加到缓存区),.代表添加文件夹下所有文件 git commit -m "first commit&qu ...

  10. struts2类型转换2

    如何自定义类型转换器 ? 1). 为什么需要自定义的类型转换器 ? 因为 Struts 不能自动完成 字符串 到 引用类型 的 转换. 2). 如何定义类型转换器: I. 开发类型转换器的类: 扩展 ...