LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)
解题思路
\(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列。做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩两个节点。然后这个东西有一个显然的性质就是所有点会在序列中出现这个点的度数\(-1\)次,这个性质有一个推论就是给你一棵树所有点的度数,你可以算出无根树不同形态的个数。公式为\(ans=\frac{(n-2)!}{\prod_{i=1}^{n}(deg[i]-1)!}\)。然后注意要质因数分解,否则中间会爆\(long long\),还要特判一些东西。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 155;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
int n,deg[MAXN],num[MAXN],prime[MAXN],cnt,sum;
bool vis[MAXN];
LL ans=1;
void solve(int x,int k){
for(int i=1;i<=cnt;i++){
while((x%prime[i]==0)) {num[i]+=k;x/=prime[i];}
if(x==1) break;
}
}
int main(){
n=rd();
if(n==1) {puts(rd()==0?"1":"0");return 0;}
for(int i=1;i<=n;i++){
deg[i]=rd();sum+=deg[i];
if(!deg[i]) {puts("0");return 0;}
deg[i]--;
}
if(sum/2+1!=n) {puts("0");return 0;}
for(int i=2;i<=150;i++){
if(!vis[i]) {prime[++cnt]=i;vis[i]=1;}
for(int j=1;j<=cnt && i*prime[j]<=150;j++){
vis[i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
for(int i=2;i<=n-2;i++) solve(i,1);
for(int i=1;i<=n;i++){
if(deg[i]<=1) continue;
for(int j=2;j<=deg[i];j++) solve(j,-1);
}
for(int i=1;i<=cnt;i++)
while(num[i]--) ans*=prime[i];
printf("%lld\n",ans);
return 0;
}
LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)的更多相关文章
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- P2290 [HNOI2004]树的计数
P2290 [HNOI2004]树的计数prufer序列模板题 #include <iostream> #include <cstdio> #include <queue ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- 洛谷 P2290 [HNOI2004]树的计数
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- [BZOJ1211][HNOI2004]树的计数(Prufer序列)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...
- BZOJ1211:[HNOI2004]树的计数(组合数学,Prufer)
Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
随机推荐
- mysql的sql筛选排重最大值并修改其属性
修改属性 mysql -h192.168.1.51 -uroot -e "use codex_game_s1051_h; update user_info set isActive=0 wh ...
- docker gitlab backup
说明:下面命令中带有<your container name>字,是 gitlab 容器的名称,请按实际情况进行代替 在创建备份之前,你不需要停止任何东西 docker exec -t & ...
- Flink开发-IDEA scala开发环境搭建
现在大数据相关服务,越来越倾向于使用scala语言,scala函数式编程的优势我不多赘述.最明显的一个优点,代码简洁.看个WordCount实现对比: Java版WordCount Execution ...
- leetcood学习笔记-501- 二叉搜索树中的众数
题目描述: 方法一: class Solution: def findMode(self, root: TreeNode) -> List[int]: if not root: return [ ...
- delphi 获得系统目录
利用Api函数,现在我介绍两个Api函数,利用他们就可以轻松简单的获取这些特殊系统目录. Function SHGetSpecialFolderLocation(hwndOwner: HWND; nF ...
- delphi 判断两个时间差是否在一个指定范围内
WithinPastYears.WithinPastMonths.WithinPastWeeks.WithinPastDays ... 判断两个时间差是否在一个指定范围内DateUtils.Withi ...
- kafk的数据消费快速的原因
kafka为什么消费数据很快呢? 1.数据的顺序读写 2.页缓存(操作系统层面) https://blog.csdn.net/gdj0001/article/details/80136364
- NX二次开发-获得制图中对象的坐标点UF_DRF_ask_origin
#include <uf.h> #include <uf_ui.h> #include <uf_drf.h> #include <uf_obj.h> # ...
- [JZOJ 5807] 简单的区间
题目: 求有多少组二元组\((l,r)\)使得:\(1<=l<=r<=n,k|f(l,r)\) \(f(l,r) = \sum_{i=l}^{r}a_i - max_{i=l}^{r ...
- Windows内核驱动开发入门学习资料
声明:本文所描述的所有资料和源码均搜集自互联网,版权归原始作者所有,所以在引用资料时我尽量注明原始作者和出处:本文所搜集资料也仅供同学们学习之用,由于用作其他用途引起的责任纠纷,本人不负任何责任.(本 ...