一、函数的渐近的界

  我们在研究算法性能的时候,往往会在意算法的运行时间,而运行时间又与算法输入的规模相关,对于一个算法,我们可以求出运行时间和输入规模的函数,当输入规模足够大时,站在极限的角度看,就可以求出运行时间如何随着输入规模的无限增长而增长。
  这种令输入规模无限大 而研究运行时间增长情况的做法,就是在研究算法的渐近效率。

几种符号的直观理解:
 
Θ,O,Ω的图像表示

Θ(渐近紧确界):若 f ( n ) = Θ ( g ( n )),则存在 c1>0 ,c2 >0,s.t. n→∞时, f ( n )夹在 c1 g ( n )和 c2 g ( n )之间。即g(n)既是f(n)的渐近上界又是渐近下界,可假装理解为”f(n) = g(n)“
且当 f ( n ) = Θ ( g ( n ))时,有:

 
 

O (渐近上界):若f ( n ) = O ( g ( n )),则存在c>0, s.t. n→∞时,f(n)在cg(n)下面。即g(n)是f(n)的渐近上界,可假装理解为“f(n) <= g(n)”
o (非渐近紧确上界):与O的区别是,任意c>0, 都使f(n)在cg(n)下面。是非紧的上界,可假装理解为“f(n) < g(n)”
且当f ( n ) = o ( g ( n ))时,有:

 
 

Ω (渐近上界):若f ( n ) = Ω ( g ( n )),则存在c>0, s.t. n→∞时,f(n)在cg(n)上面。即g(n)是f(n)的渐近下界,可假装理解为“f(n) >= g(n)”
ω (非渐近紧确下界):与Ω的区别是,任意c>0, 都使f(n)在cg(n)上面。是非紧的下界,可假装理解为“f(n) > g(n)”
且当f ( n ) = ω ( g ( n ))时,有:

 
 

二、几个重要结论(阶的比较)

基本函数类:

至少指数级:
多项式级:
对数多项式级:
多项式函数<指数函数:
对数函数<幂函数:

对数函数:

(1)(换底)
(2) (α>0)
(3)(即,形如指数函数的幂是log级,则可化成多项式级)

指数函数与阶乘:

Stirling公式:


作者:楠子小先生
链接:https://www.jianshu.com/p/b9e4126e5bce
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

函数的渐近的界&阶的比较的更多相关文章

  1. algorithms中计算时间的渐近表示

    1.大写Ο符号大写Ο符号给出了函数f的一个上限. 定义[大写Ο符号]:f(n)=Ο(g(n)),当且仅当存在正的常数c和n0,使得对于所有的n≥n0,有 f(n)≤c*g(n) 上述定义表明,函数f至 ...

  2. [MIT Intro. to algo]Lecture 1: 课程介绍,算法优势,插入算法和归并算法分析,渐近符号

    The theoretical study of computer program performance and resource useage.   First, analysis and the ...

  3. 基于GMC/umat的复合材料宏细观渐近损伤分析(一)

    近期在开展基于GMC/umat的复合材料宏细观渐近损伤分析,一些技术细节分享如下: 1.理论基础 针对连续纤维增强复合材料,可以通过离散化获得如下的模型: (a)(b)(c) 图1 连续纤维增强复合材 ...

  4. 年轻的心与渐行渐近的梦——记微软-斯坦福产品设计创新课程ME310

    作者:中国科学技术大学 王牧 Stanford  D. School 2014年6月,沐浴着加州的阳光,在斯坦福大学(下文简称Stanford)完成汇报后,历时一年的创新设计课程ME310的项目结束 ...

  5. 深入理解javascript函数进阶系列第一篇——高阶函数

    前面的话 前面的函数系列中介绍了函数的基础用法.从本文开始,将介绍javascript函数进阶系列,本文将详细介绍高阶函数 定义 高阶函数(higher-order function)指操作函数的函数 ...

  6. Python序列函数、高级特性及高阶函数

    序列函数: enumerate: for循环时记录索引,逐个返回元组(i, item) sorted:返回新的有序列表 zip:压缩将多个序列的对应位置的元素组成元组 zip(*元组列表): 解压缩 ...

  7. Python开发——函数【装饰器、高阶函数、函数嵌套、闭包】

    装饰器 装饰器本质就是函数,为其他函数添加附加功能. 原则: 不修改被修饰函数的源代码 不修改被修饰函数的调用方法 装饰器知识储备:装饰器 = 高阶函数 + 函数嵌套 + 闭包 案例:求函数运行时间! ...

  8. Python之旅Day3 文件操作 函数(递归|匿名|嵌套|高阶)函数式编程 内置方法

    知识回顾 常见五大数据类型分类小结:数字.字符串.列表.元组.字典 按存值个数区分:容器类型(列表.字典.元组) 标量原子(数字.字符串) 按是否可变区分:可变(列表.字典) 不可变(数字.字符串.元 ...

  9. pyhton 函数参数,递归函数,高阶函数(一点点笔记)

    '''def test(x,y): print(x) print(y)test(2,y=3)def test(*args):#参数可以是不确定的多个数,接受N个位置参数,转换成元组形式 print(a ...

随机推荐

  1. 洛谷P2859 [USACO06FEB]摊位预订Stall Reservations

    P2859 [USACO06FEB]摊位预订Stall Reservations 题目描述 Oh those picky N (1 <= N <= 50,000) cows! They a ...

  2. [Vue CLI 3] 配置解析之 parallel

    官方文档中介绍过在 vue.config.js 文件中可以配置 parallel,作用如下: 是否为 Babel 或 TypeScript 使用 thread-loader. 该选项在系统的 CPU ...

  3. 《2019年上半年Web应用安全报告》发布:90%以上攻击流量来源于扫描器,IP身份不再可信

    Web应用安全依然是互联网安全的最大威胁来源之一,除了传统的网页和APP,API和各种小程序也作为新的流量入口快速崛起,更多的流量入口和更易用的调用方式在提高web应用开发效率的同时也带来了更多和更复 ...

  4. AS2.2使用CMake方式进行JNI/NDK开发

    之前写过一篇比较水的文章Android手机控制电脑撸出HelloWorld 里面用到了JNI/NDK技术. 这篇文章给大家介绍下JNI/NDK开发.采用的是Android Studio2.2开发环境, ...

  5. 【JZOJ4813】【NOIP2016提高A组五校联考2】running

    题目描述 小胡同学是个热爱运动的好孩子. 每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n 个格子排成的一个环形,格子按照顺时针顺序从0 到n-1 标号. 小胡观察到有m 个同学在跑步,最开 ...

  6. No.3 Verilog 语言要素

    - 标识符 任意字母.数字."$"和"_"组成,标识符第一个不能是数字. - 注释 ()/*可扩展多行*/ ()//本行结束 - 系统函数 以$字符开始的标识符 ...

  7. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十九章:法线贴图

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十九章:法线贴图 学习目标 理解为什么需要法线贴图: 学习法线贴图如 ...

  8. 如何在 KiCad Eeschema 原理图中高亮网络

    如何在 KiCad Eeschema 原理图中高亮网络 在 KiCad Pcbnew 中高度某个网络很方便,按着 Ctrl + 单击可以高度网络. 以为 Eeschema 也是一样的,按着 Ctrl ...

  9. python 自定义检测缺失值的方法

  10. Leetcode821.Shortest Distance to a Character字符的最短距离

    给定一个字符串 S 和一个字符 C.返回一个代表字符串 S 中每个字符到字符串 S 中的字符 C 的最短距离的数组. 示例 1: 输入: S = "loveleetcode", C ...