一、函数的渐近的界

  我们在研究算法性能的时候,往往会在意算法的运行时间,而运行时间又与算法输入的规模相关,对于一个算法,我们可以求出运行时间和输入规模的函数,当输入规模足够大时,站在极限的角度看,就可以求出运行时间如何随着输入规模的无限增长而增长。
  这种令输入规模无限大 而研究运行时间增长情况的做法,就是在研究算法的渐近效率。

几种符号的直观理解:
 
Θ,O,Ω的图像表示

Θ(渐近紧确界):若 f ( n ) = Θ ( g ( n )),则存在 c1>0 ,c2 >0,s.t. n→∞时, f ( n )夹在 c1 g ( n )和 c2 g ( n )之间。即g(n)既是f(n)的渐近上界又是渐近下界,可假装理解为”f(n) = g(n)“
且当 f ( n ) = Θ ( g ( n ))时,有:

 
 

O (渐近上界):若f ( n ) = O ( g ( n )),则存在c>0, s.t. n→∞时,f(n)在cg(n)下面。即g(n)是f(n)的渐近上界,可假装理解为“f(n) <= g(n)”
o (非渐近紧确上界):与O的区别是,任意c>0, 都使f(n)在cg(n)下面。是非紧的上界,可假装理解为“f(n) < g(n)”
且当f ( n ) = o ( g ( n ))时,有:

 
 

Ω (渐近上界):若f ( n ) = Ω ( g ( n )),则存在c>0, s.t. n→∞时,f(n)在cg(n)上面。即g(n)是f(n)的渐近下界,可假装理解为“f(n) >= g(n)”
ω (非渐近紧确下界):与Ω的区别是,任意c>0, 都使f(n)在cg(n)上面。是非紧的下界,可假装理解为“f(n) > g(n)”
且当f ( n ) = ω ( g ( n ))时,有:

 
 

二、几个重要结论(阶的比较)

基本函数类:

至少指数级:
多项式级:
对数多项式级:
多项式函数<指数函数:
对数函数<幂函数:

对数函数:

(1)(换底)
(2) (α>0)
(3)(即,形如指数函数的幂是log级,则可化成多项式级)

指数函数与阶乘:

Stirling公式:


作者:楠子小先生
链接:https://www.jianshu.com/p/b9e4126e5bce
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

函数的渐近的界&阶的比较的更多相关文章

  1. algorithms中计算时间的渐近表示

    1.大写Ο符号大写Ο符号给出了函数f的一个上限. 定义[大写Ο符号]:f(n)=Ο(g(n)),当且仅当存在正的常数c和n0,使得对于所有的n≥n0,有 f(n)≤c*g(n) 上述定义表明,函数f至 ...

  2. [MIT Intro. to algo]Lecture 1: 课程介绍,算法优势,插入算法和归并算法分析,渐近符号

    The theoretical study of computer program performance and resource useage.   First, analysis and the ...

  3. 基于GMC/umat的复合材料宏细观渐近损伤分析(一)

    近期在开展基于GMC/umat的复合材料宏细观渐近损伤分析,一些技术细节分享如下: 1.理论基础 针对连续纤维增强复合材料,可以通过离散化获得如下的模型: (a)(b)(c) 图1 连续纤维增强复合材 ...

  4. 年轻的心与渐行渐近的梦——记微软-斯坦福产品设计创新课程ME310

    作者:中国科学技术大学 王牧 Stanford  D. School 2014年6月,沐浴着加州的阳光,在斯坦福大学(下文简称Stanford)完成汇报后,历时一年的创新设计课程ME310的项目结束 ...

  5. 深入理解javascript函数进阶系列第一篇——高阶函数

    前面的话 前面的函数系列中介绍了函数的基础用法.从本文开始,将介绍javascript函数进阶系列,本文将详细介绍高阶函数 定义 高阶函数(higher-order function)指操作函数的函数 ...

  6. Python序列函数、高级特性及高阶函数

    序列函数: enumerate: for循环时记录索引,逐个返回元组(i, item) sorted:返回新的有序列表 zip:压缩将多个序列的对应位置的元素组成元组 zip(*元组列表): 解压缩 ...

  7. Python开发——函数【装饰器、高阶函数、函数嵌套、闭包】

    装饰器 装饰器本质就是函数,为其他函数添加附加功能. 原则: 不修改被修饰函数的源代码 不修改被修饰函数的调用方法 装饰器知识储备:装饰器 = 高阶函数 + 函数嵌套 + 闭包 案例:求函数运行时间! ...

  8. Python之旅Day3 文件操作 函数(递归|匿名|嵌套|高阶)函数式编程 内置方法

    知识回顾 常见五大数据类型分类小结:数字.字符串.列表.元组.字典 按存值个数区分:容器类型(列表.字典.元组) 标量原子(数字.字符串) 按是否可变区分:可变(列表.字典) 不可变(数字.字符串.元 ...

  9. pyhton 函数参数,递归函数,高阶函数(一点点笔记)

    '''def test(x,y): print(x) print(y)test(2,y=3)def test(*args):#参数可以是不确定的多个数,接受N个位置参数,转换成元组形式 print(a ...

随机推荐

  1. 用 Python 写一个 NoSQL 数据库Python

    NoSQL 这个词在近些年正变得随处可见. 但是到底 “NoSQL” 指的是什么? 它是如何并且为什么这么有用? 在本文, 我们将会通过纯 Python (我比较喜欢叫它, “轻结构化的伪代码”) 写 ...

  2. PyCharm使用之配置SSH Interpreter

      在文章PyCharm使用之利用Docker镜像搭建Python开发环境中,该文章介绍了在PyCharm中如何利用Docker镜像搭建Python开发环境.在本文中,将会介绍如何使用PyCharm来 ...

  3. ajax成功请求到后台,但是前端报404错误

    记录下今天遇见的一个问题,一个删除的ajax请求,传递一个主键到后台,后台成功接受并执行删除,但是前端报POST404错误. 查找原因是由于Controller忘记写返回状态码 @Responsebo ...

  4. 第三十一讲:UML类图(上)

    类名 成员变量:属性 成员函数:方法 访问权限-属性名-属性的类型 访问权限-方法名-返回值,还可以传递参数列表. 继承类的类图 JAVA里面类的访问权限只有两种:package(默认的访问权限)和p ...

  5. Leetcode908.Smallest Range I最小差值1

    给定一个整数数组 A,对于每个整数 A[i],我们可以选择任意 x 满足 -K <= x <= K,并将 x 加到 A[i] 中. 在此过程之后,我们得到一些数组 B. 返回 B 的最大值 ...

  6. node.js的path模块

    path模块的各种API path.join([...paths]) 参数:paths <string> ,paths参数是字符串,这些字符串按路径片段顺序排列,(A sequence o ...

  7. nth-child和nth-of-type的使用案列

    HTML: <div id="footer-f"> <ul class="trajectory"> <li> <div ...

  8. 可变参数与foreach 的原理

    曾经写过c++11特性使用,但是这个究竟是什么呢,和其他语言的foreach语句十分相像 函数必须具有在编译时已知的单个返回类型;当编译器可以从上下文中找出它必须是什么时,auto只会使您不必输入它. ...

  9. Directx教程(24) 简单的光照模型(3)

    原文:Directx教程(24) 简单的光照模型(3)      在工程myTutorialD3D11_17中,我们重新定义我们的cube顶点法向,每个三角形面的顶点法向都是和这个三角形的面法向是一致 ...

  10. PHPCMS快速建站系列之标签循环嵌套

    标签循环嵌套方法,可以实现对PC标签循环调用,代码如下: 在此文件里/phpcms/lib/classes/template_cache.class.php 里的 template_parse 方法里 ...