「JSOI2015」送礼物
「JSOI2015」送礼物
看到这题首先想到分数规划。
我们发现对于当前区间,如果它的最大值和最小值不是分居区间的两个端点的话,那么我们显然可以把两端多出去的部分舍掉,因为,在区间最大值最小值都不变的情况下,区间肯定是越短越优的。
但是要注意一点就是区间长度也是有下界的。
所以说我们就先处理所有区间长度为下界 \(L\) 的情况,然后再对区间长度位于 \([L + 1, R]\) 的区间做处理。
二分答案 \(mid\) ,假设当前区间是 \([l, r]\) 那么就有:
\]
由于我们之前说过最大值和最小值一定分居区间的两个端点(是这里不妨假设 \(a_l\) 为最大值,另一种情况同理
那么就有:
\]
所以我们可以令 \(f_i = a_i + i \times mid\) ,然后枚举左端点,查询右端点的最小值即可(这个可以用 \(\text{ST}\) 表维护)
但是要记得判断右端点越界的情况。
参考代码:
#include <algorithm>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 5e4 + 5;
const double eps = 1e-7;
int n, k, L, R, a[_], lg[_];
int mn[18][_], mx[18][_]; double f[18][_];
inline int query_mn(int l, int r) {
int x = lg[r - l + 1];
return min(mn[x][l], mn[x][r - (1 << x) + 1]);
}
inline int query_mx(int l, int r) {
int x = lg[r - l + 1];
return max(mx[x][l], mx[x][r - (1 << x) + 1]);
}
inline double query(int l, int r) {
int x = lg[r - l + 1];
return min(f[x][l], f[x][r - (1 << x) + 1]);
}
inline bool chk(double mid) {
for (rg int i = 1; i <= n; ++i) f[0][i] = a[i] + mid * i;
for (rg int i = 1; i <= lg[n]; ++i)
for (rg int j = 1; j + (1 << i) - 1 <= n; ++j)
f[i][j] = min(f[i - 1][j], f[i - 1][j + (1 << (i - 1))]);
double res = -2e9;
for (rg int i = 1; i + L <= n; ++i)
res = max(res, f[0][i] - query(i + L, min(i + R - 1, n)));
return res >= k * mid;
}
inline bool check(double mid) {
if (chk(mid)) return 1;
reverse(a + 1, a + n + 1);
if (chk(mid)) return 1;
return 0;
}
inline void solve() {
read(n), read(k), read(L), read(R);
for (rg int i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1;
for (rg int i = 1; i <= n; ++i) read(a[i]), mn[0][i] = mx[0][i] = a[i];
for (rg int i = 1; i <= lg[n]; ++i)
for (rg int j = 1; j + (1 << i) - 1 <= n; ++j) {
mn[i][j] = min(mn[i - 1][j], mn[i - 1][j + (1 << (i - 1))]);
mx[i][j] = max(mx[i - 1][j], mx[i - 1][j + (1 << (i - 1))]);
}
double ans = -2e9;
for (rg int i = 1; i + L - 1 <= n; ++i)
ans = max(ans, 1.0 * (query_mx(i, i + L - 1) - query_mn(i, i + L - 1)) / (L + k - 1));
double l = 0, r = 1000;
while (r - l > eps) {
double mid = (l + r) / 2;
if (check(mid)) l = mid; else r = mid;
}
printf("%.4lf\n", max(ans, l));
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
int T; read(T);
while (T--) solve();
return 0;
}
「JSOI2015」送礼物的更多相关文章
- 「CH2401」送礼物 解题报告
CH2401 送礼物 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_- ...
- 「JSOI2015」串分割
「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...
- 「JSOI2015」isomorphism
「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...
- 「JSOI2015」symmetry
「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...
- 「JSOI2015」地铁线路
「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...
- 「JSOI2015」染色问题
「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...
- 「JSOI2015」圈地
「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...
- 「JSOI2015」最小表示
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...
- 「JSOI2015」套娃
「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...
随机推荐
- MySQL认知
MySQL 认识MySQL MySQL是什么? MySQL是最流行的关系型数据库管理系统,在WEB应用方面MySQL是最好的RDBMS(Relational Database Management S ...
- c# 泛型<T>类型参数T的约束where
在定义泛型类时,可以对客户端代码能够在实例化类时用于类型参数的类型种类施加限制.如果客户端代码尝试使用某个约束所不允许的类型来实例化类,则会产生编译时错误.这些限制称为约束.约束是使用 where 上 ...
- DOM盒模型和位置 client offset scroll 和滚动的关系
DOM盒模型和位置 client offset scroll 和滚动的关系 概览 在dom里面有几个描述盒子位置信息的值, pading border margin width height clie ...
- spring(三):DefaultListableBeanFactory
- mybatis(六):设计模式 - 工厂方法模式
- ASP.NET + MVC5 入门完整教程五 --- Razor (模型与布局)
https://blog.csdn.net/qq_21419015/article/details/80451895 1.准备示例项目 为了演示Razor,使用VS创建一个名称为“Razor”的新项目 ...
- jmeter+ant+jenkins接口自动化测试框架
大致思路:Jmeter可以做接口测试,也能做压力测试,而且是开源软件:Ant是基于Java的构建工具,完成脚本执行并收集结果生成报告,可以跨平台,Jenkins是持续集成工具.将这三者结合起来可以搭建 ...
- wireshark抓pc上的包
简介:wirkshark是全世界最广泛的网络封包分析软件之一. 软件用途: 网络管理员:我用它检测网络问题, 网络安全工程师:我用它检查资讯安全相关问题, 开发者:我用它为新的通讯协定除错, 普通使用 ...
- P1582 倒水(贪心 + lowbbit)
https://www.luogu.com.cn/problem/P1582 #include <bits/stdc++.h> using namespace std; #define i ...
- Array,String,Set,Map
热爱前端的17号诶 积跬步以致千里 积怠惰以致深渊 博客园 首页 新随笔 联系 管理 随笔 - 58 文章 - 2 评论 - 65 最新数组方法(包括es6) for...of 是 ES6 新引入 ...