爬山 启发式合并 / STL
题目
其实 Kano 曾经到过由乃山,当然这名字一看山主就是 Yuno 嘛。当年 Kano 看见了由乃山,内心突然涌出了一股杜甫会当凌绝顶,一览众山小的豪气,于是毅然决定登山。
但是 Kano 总是习惯性乱丢垃圾,增重环卫工人的负担,Yuno 并不想让 Kano 登山,于是她果断在山上设置了结界……
Yuno 为了方便登山者,在山上造了 N 个营地,编号从 0 开始。当结界发动时,每当第 i(>0)号营地内有人,那么他将被传送到第 Ai(<i)号营地,如此循环,所以显然最后只会被传送到第 0 号营地。
但 Kano 并不知晓结界的情况。他登山的方法是这样的:首先分身出一个编号为 Gi 的 Kano,然后将其用投石机抛掷到营地 Di。Kano 总共做了 M 次这样的登山操作,但每次抛出去的 Kano 都被传送回了营地 0,所以 Kano 只好放弃了。
但是 Kano 在思考一个问题,到底每个营地被多少只编号不同的 Kano 经过过?
输入格式
第一行两个整数 N,M,表示山的营地数和登山次数。
接下来 N−1 行,每行一个数,第 i 行为 Ai,表示营地 i 将会传向营地 Ai。
接下来 M 行,每行两个数 Di,Gi。
输出格式
共 N 行,每行表示营地 i 有多少不同编号的 Kano 曾经通过。
样例数据
Input
5 4
0
0
1
1
4 1
3 1
2 2
4 2
Output
2
2
1
1
2
样例解释
1 号 Kano 曾被抛到 3,4 两个营地,传送轨迹分别是 3−1−0, 4−1−0
2 号 Kano 曾被抛到 2,4 两个营地,传送轨迹分别是 2−0, 4−1−0
所以 0,1,4 号营地被两只 Kano 经过过,2,3 号营地被一只 Kano 经过过。
数据规模与约定
\(5≤N≤100000,10≤M≤100000,max(Gi)≤1000000000\)
时间限制:1s
空间限制:512MB
思路
首先来想一想本题的暴力解法.
很直观的思路是对每一个营地用数组(或\(vector\)/\(set\)/\(queue\)/线段树/平衡树)维护一个集合,存放到达过该点的\(Kano\)的编号.当第\(i\)号营地里的\(Kano\)被传送到第\(A_i\)号营地时,把维护的第\(i\)号营地的集合合并到第\(A_i\)号营地的集合里.最后,每个营地的集合去重后的大小,就是曾经经过了该营地的不同编号的\(Kano\)的数量.
这样就有两个问题:一是合并的顺序;二是怎么合并两个数据结构.
第一个问题很好回答:我们可以倒序从\(n\)到\(1\)遍历序列,每次计算出该营地的答案,同时把该营地的数据合并到\(A_i\)营地.这是因为\(A_i<i\),也就是说,无论哪次合并,都是"从后面的某个营地合并到前面的某个营地".换句话说,一个营地的状态,只与它和它后面的某些营地有关.
第二个问题也很好回答,只需要按照启发式合并的思想,每次都将小的集合合并到大的集合,这样可以获得优秀的\(O(nlog_2n)\)的时间复杂度.
在代码实现中我使用了\(STL-set\),以省去去重的环节.
代码
#include<cstdio>
#include<set>
using namespace std;
int n,A[100005],m,G,D,Ans[100005],ID[100005];
set<int>x[100005];
inline void Merge(int u,int v){
if(x[ID[u]].size()<x[ID[v]].size())swap(ID[u],ID[v]);//启发式合并
for(set<int>::iterator it=x[ID[v]].begin();it!=x[ID[v]].end();it++)
x[ID[u]].insert(*it);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=2;i<=n;i++){ scanf("%d",&A[i]); A[i]++; }
for(int i=1;i<=n;i++)ID[i]=i;
while(m--){ scanf("%d%d",&G,&D); x[ID[G+1]].insert(D); }
for(int i=n;i;i--){ Ans[i]=x[ID[i]].size(); if(A[i])Merge(A[i],i); }//将 i 合并到 A[i]
for(int i=1;i<=n;i++)printf("%d\n",Ans[i]);
return 0;
}
总结
如果把题给的条件看成\(<i,A_i>\)的有向边,那么可以建出一个\(DAG\)图,而上面提到的倒序从\(n\)到\(1\)就是该图的一个拓扑序,因此我们可以倒着合并.
爬山 启发式合并 / STL的更多相关文章
- [NOI2015] 品酒大会 - 后缀数组,并查集,STL,启发式合并
[NOI2015] 品酒大会 Description 对于每一个 \(i \in [0,n)\) 求有多少对后缀满足 LCP 长度 \(\le i\) ,并求满足条件的两个后缀权值乘积的最大值. So ...
- 【BZOJ1483】【HNOI2009】梦幻布丁(启发式合并,平衡树)
[BZOJ1483][HNOI2009]梦幻布丁 题面 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...
- [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 【BZOJ3123】森林(主席树,启发式合并)
题意:一个带点权的森林,要求维护以下操作: 1.询问路径上的点权K大值 2.两点之间连边 n,m<=80000 思路:如果树的结构不发生变化只需要维护DFS序 现在因为树的结构发生变化,要将两棵 ...
- BZOJ2888 资源运输(LCT启发式合并)
这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式 ...
- 【BZOJ 2733】【HNOI 2012】永无乡 Splay启发式合并
启发式合并而已啦,, 调试时发现的错误点:insert后没有splay,把要拆开的树的点插入另一个树时没有把ch[2]和fa设为null,找第k大时没有先减k,,, 都是常犯的错误,比赛时再这么粗心就 ...
- 51nod 1515 明辨是非 并查集 + set + 启发式合并
给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输 ...
- [BZOJ 1483][HNOI 2009]梦幻补丁(有序表启发式合并)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1483 分析: 先将不同的颜色的出现位置从小到大用几条链表串起来,然后统计一下答案 对于 ...
- 【BZOJ-2809】dispatching派遣 Splay + 启发式合并
2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2334 Solved: 1192[Submi ...
随机推荐
- Npoi常用操作方法介绍
1.ShiftRows(startRow,endRow,moveRows) 将开始行到结束行向上或者向下移动moveRows行,moveRows为正数向下移动,为负数向上移动(向上移动,会把之前的行覆 ...
- [CF1303F] Number of Components - 并查集,时间倒流
有一个 \(n \times m\) 矩阵,初态下全是 \(0\). 如果两个相邻元素(四连通)相等,我们就说它们是连通的,且这种关系可以传递. 有 \(q\) 次操作,每次指定一个位置 \((x_i ...
- AI 所需的数学基础
一.[微积分] 基础概念(极限.可微与可导.全导数与偏导数):只要学微积分,就必须要明白的概念,否则后面什么都无法继续学习. 函数求导:求导是梯度的基础,而梯度是 AI 算法的基础,因此求导非常重要! ...
- 关于华为高斯数据库 GaussDB 版本及认证体系介绍
目录 你需要知道的 技术有国界 从它的名称说起 你听到过的版本 你听到过的流言蜚语 各个版本的区别 版本未来名称 华为 GaussDB 认证体系介绍 GaussDB 其他资料相关链接 你需要知道的 任 ...
- Linux命令——细节
echo -n 不换行输出 echo -e 处理特殊字符 若字符串中出现以下字符,则特别加以处理,而不会将它当成一般文字输出: \a 发出警告声: \b 删除前一个字符: \c 最后不加上换行符号: ...
- VSCode常用插件之open in browser使用
更多VSCode插件使用请访问:VSCode常用插件汇总 open in browser安装完这个插件就可以在编辑器菜单右键html,在默认浏览器打开了,高级使用暂未了解,请自行其它文章学习
- Codeforces Round #596 (Div. 2)D.Power Products
题意: 给一个数组,给你一个k,找出两个数字的积可以变成xk的数对对数 解析: 当且仅当,两个数进行质因子分解后每个因子的个数都是k的倍数个就说明这是满足条件的一对,可以让每个因子个数%k用map找对 ...
- Linux运维--14.Kolla部署OpenStack使用external MariaDB Galera Cluster
使用haproxy+keepalived实现Mariadb负载均衡 controller2: 10.100.2.52 haproxy+keepalived controller3: 10.100.2. ...
- [HNOI2013] 消毒 - 二分图匹配
容易发现 \(a,b,c\) 中至少有一个 \(\leq 17\) 不妨将其调剂为 \(a\),那么我们可以暴力枚举哪些 \(x\) 片片要被直接削掉,剩下的拍扁成二维情况 二维时,如果有一个格子是 ...
- 树莓派操作案例1-使用python GPIO+TB6612驱动步进电机
原理图: 接口说明 A控制信号输入------PWMA VM ------电机驱动电压输入端(4.5V-15V) A电机输入端2 ------AIN2 ...