CF986F Oppa Funcan Style Remastered

不错的图论转化题!

题目首先转化成:能否用若干个k的非1因数的和=n

其次,因数太多,由于只是可行性,不妨直接都用质因子来填充!

即:是否存在ai,使得∑ai*pi=n

经典套路:同余系最短路!

最小质因子p0,n一定是若干p0和其他的数凑出来的

dis[i]表示,%p0=i的数用pi来凑出来,最小是多少。最短路即可。

如果dis[n%p0]<=n,那么一定可以!

把询问离线,按照k依次处理。

一些特殊情况:

k=1,全都是NO

k是质数,特判

k是p1,p2两个质因子,这时最短路点数可能是3e7的,会TLE,于是解不定方程:x*p1+y*p2=n是否有x,y的自然数解。注意很可能爆long long,所以x=(n/g)%(p2/g)*x%(p2/g)

k有三个以上质因子,点数最多1e5,同余系最短路。

质因数分解可以暴力分解,线性筛出根号1e15的质数,总分解复杂度<50*4000000

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
}
//using namespace Modulo;
namespace Miracle{
const int N=1e5+;
const int M=+;
int m;
struct qs{
ll n,k,id;
bool friend operator <(qs a,qs b){
return a.k<b.k;
}
}q[N];
int ans[N];
vector<ll>yin;
int pri[+],cnt;
bool vis[M];
void sieve(int n){
for(reg i=;i<=n;++i){
if(!vis[i]){
pri[++cnt]=i;
}
for(reg j=;j<=cnt;++j){
if(i*pri[j]>n) break;
vis[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
}
ll dis[N];
queue<int>Q;
void spfa(int mod){
memset(dis,0x3f,sizeof dis);
// for(solid y:yin){
// // cout<<" yy "<<y<<endl;
// }
dis[]=;
Q.push();
while(!Q.empty()){
int x=Q.front();Q.pop();vis[x]=;
// cout<<"xx "<<x<<endl;
for(reg i=;i<yin.size();++i){
int y=(x+yin[i])%mod;
if(dis[y]>dis[x]+yin[i]){
dis[y]=dis[x]+yin[i];
if(!vis[y]){
vis[y]=;
Q.push(y);
}
}
}
}
}
void divi(ll K){
yin.clear();
ll tmp=K;
for(reg i=;(ll)pri[i]*pri[i]<=tmp&&i<=cnt;++i){
if(tmp%pri[i]==){
yin.pb(pri[i]);
while(tmp%pri[i]==) tmp/=pri[i];
}
}
if(tmp!=) yin.pb(tmp);
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=;y=;return a;
}
ll ret=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return ret;
}
int main(){
rd(m);
ll mx=;
for(reg i=;i<=m;++i){
rd(q[i].n);rd(q[i].k);q[i].id=i;
mx=max(mx,q[i].k);
}
mx=sqrt(mx);
sieve(mx);
memset(vis,,mx+);
// prt(vis,0,mx);
sort(q+,q+m+);
int typ=;
for(reg i=;i<=m;++i){
if(q[i].k!=q[i-].k){
divi(q[i].k);
typ=;
if(q[i].k==) typ=;
else if(yin.size()==) typ=;
else if(yin.size()==) typ=;
else{
typ=;
int mod=yin[];
spfa(mod);
}
}
// cout<<" typ "<<typ<<endl;
// prt(dis,0,yin[0]-1);
if(typ==){
ans[q[i].id]=;
}
else if(typ==){
if(q[i].n%yin[]==){
ans[q[i].id]=;
}
}else if(typ==){
// cout<<" typ==2 "<<endl;
ll x,y;
ll g=exgcd(yin[],yin[],x,y);
// cout<<" gg "<<g<<" "<<yin[0]<<" "<<yin[1]<<endl;
// cout<<"st "<<x<<" "<<y<<" : "<<x*yin[0]+y*yin[1]<<endl;
ll md=yin[]/g;
x=(x%md+md)%md;
if(q[i].n%g==){
x=(q[i].n/g)%md*x%md;
y=(q[i].n-x*yin[])/yin[];
// cout<<" x "<<x<<" y "<<y<<endl;
// cout<<" eql "<<x*yin[0]+y*yin[1]<<endl;
if(y>=){
ans[q[i].id]=;
}
}
}else{
if(dis[q[i].n%yin[]]<=q[i].n){
ans[q[i].id]=;
}
}
}
for(reg i=;i<=m;++i){
if(ans[i]) puts("YES");
else puts("NO");
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

PS:

以后解一个多元一次不定方程,最小的数不太大的时候,同余最短路都可以尝试!

CF986F Oppa Funcan Style Remastered的更多相关文章

  1. [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]

    题意 给你 \(n\) 和 \(k\) ,问能否用 \(k\) 的所有 \(>1\) 的因子凑出 \(n\) .多组数据,但保证不同的 \(k\) 不超过 50 个. \(n\leq 10^{1 ...

  2. 「CF986F」 Oppa Funcan Style Remastered

    「CF986F」 Oppa Funcan Style Remastered Link 首先发现分解成若干个 \(k\) 的因数很蠢,事实上每个因数都是由某个质因子的若干倍组成的,所以可以将问题转换为分 ...

  3. codeforces986F Oppa Funcan Style Remastered【线性筛+最短路】

    容易看出是用质因数凑n 首先01个因数的情况可以特判,2个的情况就是ap1+bp2=n,b=n/p2(mod p1),这里的b是最小的特解,求出来看bp2<=n则有解,否则无解 然后剩下的情况最 ...

  4. [Codeforces 485F] Oppa Funcan Style Remastered

    [题目链接] https://codeforces.com/contest/986/problem/F [算法] 不难发现 , 每个人都在且仅在一个简单环中 , 设这些环长的长度分别为 A1, A2 ...

  5. Codeforces 986F - Oppa Funcan Style Remastered(同余最短路)

    Codeforces 题面传送门 & 洛谷题面传送门 感谢此题教会我一个东西叫做同余最短路(大雾 首先这个不同 \(k\) 的个数 \(\le 50\) 这个条件显然是让我们对每个 \(k\) ...

  6. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  7. The Air Jordan 4 Oreo Remastered would be re-released in 2015

    May be the Jordan 4 Oreo probably the most anticipated pair among the remastered Jordans for 2015? W ...

  8. JavaScript特性(attribute)、属性(property)和样式(style)

    最近在研读一本巨著<JavaScript忍者秘籍>,里面有一篇文章提到了这3个概念. 书中的源码可以在此下载.我将源码放到了线上,如果不想下载,可以直接访问在线网址,修改页面名就能访问到相 ...

  9. obj.style.z-index的正确写法

    obj.style.z-index的正确写法 今天发现obj.style.z-index在js里面报错,后来才知道在js里应该把含"-"的字符写成驼峰式,例如obj.style.z ...

随机推荐

  1. 在Vmware安装虚拟机WindowsServer 2003

    一.创建并安装虚拟机 新建Windows2003server系统 按照下面操作即可 https://www.cnblogs.com/color-blue/p/8525710.html 二.安装虚拟机 ...

  2. python基础--类的继承以及mro

    继承: 什么是继承: 继承是一种关系,描述两个对象之间什么是什么的关系 在程序中,继承描述的是类和类之间的关系 例如 a继承了b,a就能直接使用b已经存在的方法和属性了 a称之为子类,b称之为父类,成 ...

  3. homebrew长时间停在Updating Homebrew 这个步骤

    在国内的网络环境下使用 Homebrew 安装软件的过程中可能会长时间卡在 Updating Homebrew 这个步骤. 例:执行 brew install composer 命令 ➜ ~ brew ...

  4. vue里图片压缩上传组件

    //单图上传 <template> <div> <div class="uploader" v-if='!dwimg'> <van-upl ...

  5. Leetcode120.Triangle三角形最小路径和

    给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11 ...

  6. JavaScript基本的使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 问题解决:在js中绑定onclick事件为什么不加括号,在html代码中必须要加?(转载)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. arcgis增大缩放级别

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. homeworkvue

    两个半圆,点一下转90°,两个颜色 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...

  10. 使用FastJson对实体类和Json还有JSONObject之间的转换

    1. 实体类或集合转JSON串 String jsonString = JSONObject.toJSONString(实体类); 2.JSON串转JSONObject JSONObject json ...