Go语言中的单例模式(翻译)
在过去的几年中,Go语言的发展是惊人的,并且吸引了很多由其他语言(Python、PHP、Ruby)转向Go语言的跨语言学习者。 Go语言太容易实现并发了,以至于它在很多地方被不正确的使用了。
Go语言中的单例模式
在过去的几年中,Go语言的发展是惊人的,并且吸引了很多由其他语言(Python、PHP、Ruby)转向Go语言的跨语言学习者。
在过去的很长时间里,很多开发人员和初创公司都习惯使用Python、PHP或Ruby快速开发功能强大的系统,并且大多数情况下都不需要担心内部事务如何工作,也不需要担心线程安全性和并发性。直到最近几年,多线程高并发的系统开始流行起来,我们现在不仅需要快速开发功能强大的系统,而且还要保证被开发的系统能够足够快速运行。(我们真是太难了☺️)
对于被Go语言天生支持并发的特性吸引来的跨语言学习者来说,我觉着掌握Go语言的语法并不是最难的,最难的是突破既有的思维定势,真正理解并发和使用并发来解决实际问题。
Go语言太容易实现并发了,以至于它在很多地方被不正确的使用了。
常见的错误
有一些错误是很常见的,比如不考虑并发安全的单例模式。就像下面的示例代码:
package singleton
type singleton struct {}
var instance *singleton
func GetInstance() *singleton {
if instance == nil {
instance = &singleton{} // 不是并发安全的
}
return instance
}
在上述情况下,多个goroutine可以执行第一个检查,并且它们都将创建该singleton类型的实例并相互覆盖。无法保证它将在此处返回哪个实例,并且对该实例的其他进一步操作可能与开发人员的期望不一致。
不好的原因是,如果有代码保留了对该单例实例的引用,则可能存在具有不同状态的该类型的多个实例,从而产生潜在的不同代码行为。这也成为调试过程中的一个噩梦,并且很难发现该错误,因为在调试时,由于运行时暂停而没有出现任何错误,这使非并发安全执行的可能性降到了最低,并且很容易隐藏开发人员的问题。
激进的加锁
也有很多对这种并发安全问题的糟糕解决方案。使用下面的代码确实能解决并发安全问题,但会带来其他潜在的严重问题,通过加锁把对该函数的并发调用变成了串行。
var mu Sync.Mutex
func GetInstance() *singleton {
mu.Lock() // 如果实例存在没有必要加锁
defer mu.Unlock()
if instance == nil {
instance = &singleton{}
}
return instance
}
在上面的代码中,我们可以看到在创建单例实例之前通过引入Sync.Mutex和获取Lock来解决并发安全问题。问题是我们在这里执行了过多的锁定,即使我们不需要这样做,在实例已经创建的情况下,我们应该简单地返回缓存的单例实例。在高度并发的代码基础上,这可能会产生瓶颈,因为一次只有一个goroutine可以获得单例实例。
因此,这不是最佳方法。我们必须考虑其他解决方案。
Check-Lock-Check模式
在C ++和其他语言中,确保最小程度的锁定并且仍然是并发安全的最佳和最安全的方法是在获取锁定时利用众所周知的Check-Lock-Check模式。该模式的伪代码表示如下。
if check() {
lock() {
if check() {
// 在这里执行加锁安全的代码
}
}
}
该模式背后的思想是,你应该首先进行检查,以最小化任何主动锁定,因为IF语句的开销要比加锁小。其次,我们希望等待并获取互斥锁,这样在同一时刻在那个块中只有一个执行。但是,在第一次检查和获取互斥锁之间,可能有其他goroutine获取了锁,因此,我们需要在锁的内部再次进行检查,以避免用另一个实例覆盖了实例。
如果将这种模式应用于我们的GetInstance()方法,我们会写出类似下面的代码:
func GetInstance() *singleton {
if instance == nil { // 不太完美 因为这里不是完全原子的
mu.Lock()
defer mu.Unlock()
if instance == nil {
instance = &singleton{}
}
}
return instance
}
通过使用sync/atomic这个包,我们可以原子化加载并设置一个标志,该标志表明我们是否已初始化实例。
import "sync"
import "sync/atomic" var initialized uint32
... // 此处省略 func GetInstance() *singleton { if atomic.LoadUInt32(&initialized) == 1 { // 原子操作
return instance
} mu.Lock()
defer mu.Unlock() if initialized == 0 {
instance = &singleton{}
atomic.StoreUint32(&initialized, 1)
} return instance
}
但是……这看起来有点繁琐了,我们其实可以通过研究Go语言和标准库如何实现goroutine同步来做得更好。
Go语言惯用的单例模式
我们希望利用Go惯用的方式来实现这个单例模式。我们在标准库sync中找到了Once类型。它能保证某个操作仅且只执行一次。下面是来自Go标准库的源码(部分注释有删改)。
// Once is an object that will perform exactly one action.
type Once struct {
// done indicates whether the action has been performed.
// It is first in the struct because it is used in the hot path.
// The hot path is inlined at every call site.
// Placing done first allows more compact instructions on some architectures (amd64/x86),
// and fewer instructions (to calculate offset) on other architectures.
done uint32
m Mutex
} func (o *Once) Do(f func()) {
if atomic.LoadUint32(&o.done) == 0 { // check
// Outlined slow-path to allow inlining of the fast-path.
o.doSlow(f)
}
} func (o *Once) doSlow(f func()) {
o.m.Lock() // lock
defer o.m.Unlock() if o.done == 0 { // check
defer atomic.StoreUint32(&o.done, 1)
f()
}
}
这说明我们可以借助这个实现只执行一次某个函数/方法,once.Do()的用法如下:
once.Do(func() {
// 在这里执行安全的初始化
})
下面就是单例实现的完整代码,该实现利用sync.Once类型去同步对GetInstance()的访问,并确保我们的类型仅被初始化一次。
package singleton import (
"sync"
) type singleton struct {} var instance *singleton
var once sync.Once func GetInstance() *singleton {
once.Do(func() {
instance = &singleton{}
})
return instance
}
因此,使用sync.Once包是安全地实现此目标的首选方式,类似于Objective-C和Swift(Cocoa)实现dispatch_once方法来执行类似的初始化。
结论
当涉及到并发和并行代码时,需要对代码进行更仔细的检查。始终让你的团队成员执行代码审查,因为这样的事情很容易就会被发现。
所有刚转到Go语言的新开发人员都必须真正了解并发安全性如何工作以更好地改进其代码。即使Go语言本身通过允许你在对并发性知识知之甚少的情况下设计并发代码,也完成了许多繁重的工作。在某些情况下,单纯的依靠语言特性也无能为力,你仍然需要在开发代码时应用最佳实践。
翻译自http://marcio.io/2015/07/singleton-pattern-in-go/,考虑到可读性部分内容有修改。
Go语言中的单例模式(翻译)的更多相关文章
- Go语言中的单例模式
Go语言中的单例模式 在过去的几年中,Go语言的发展是惊人的,并且吸引了很多由其他语言(Python.PHP.Ruby)转向Go语言的跨语言学习者. Go语言太容易实现并发了,以至于它在很多地方被不正 ...
- java中的单例模式与doublecheck
转自: http://devbean.blog.51cto.com/448512/203501 在GoF的23种设计模式中,单例模式是比较简单的一种.然而,有时候越是简单的东西越容易出现问题.下面就单 ...
- python中的单例模式、元类
单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...
- Objective-C中的单例模式
单例模式算是设计模式中比较简单的一种吧,设计模式不是只针对某种编程语言,在C++, Java, PHP等其他OOP语言也有设计模式,笔者初接触设计模式是通过<漫谈设计模式>了解 ...
- C# 中实现单例模式
文章目录 简介 不安全线程的单例模式 简单安全线程带锁 双重检查 - 带锁 安全初始化 安全并且懒汉式静态初始化 带泛型的懒汉式单例 异常 提高效率 总结 简介 单例模式是软件工程中广为人知的设计模式 ...
- 【转载】理解C语言中的关键字extern
原文:理解C语言中的关键字extern 最近写了一段C程序,编译时出现变量重复定义的错误,自己查看没发现错误.使用Google发现,自己对extern理解不透彻,我搜到了这篇文章,写得不错.我拙劣的翻 ...
- Swift语言中如何使用JSON数据教程
这是一篇翻译文章,原文出处:http://www.raywenderlich.com/82706/working-with-json-in-swift-tutorial Swift语言中如何使用JSO ...
- C语言中的宏定义
目录(?)[-] 简单宏定义 带参数的宏 运算符 运算符 宏的通用属性 宏定义中圆括号 创建较长的宏 较长的宏中的逗号运算符 宏定义中的do-while循环do 空操作的定义 预定义宏 C语言中常用的 ...
- Go语言安全编码规范-翻译(分享转发)
Go语言安全编码规范-翻译 本文翻译原文由:blood_zer0.Lingfighting完成 如果翻译的有问题:联系我(Lzero2012).匆忙翻译肯定会有很多错误,欢迎大家一起讨论Go语言安全能 ...
随机推荐
- hadoop传递参数方法总结
转自:http://blog.csdn.net/xichenguan/article/details/22162813 写MapReduce程序通常要传递各种各样的参数,选择合适的方式来传递参数既能提 ...
- C#反射与特性(七):自定义特性以及应用
目录 1,属性字段的赋值和读值 2,自定义特性和特性查找 2.1 特性规范和自定义特性 2.2 检索特性 3,设计一个数据验证工具 3.1 定义抽象验证特性类 3.2 实现多个自定义验证特性 3.3 ...
- 小小TODO标识,你用对了吗?
前言 有时,您需要标记部分代码以供将来参考,比如: 优化,改进,可能的更改,要讨论的问题等. 通常我们会在代码中加入如下的标记表示待办: //TODO 我将要在这里做 xxx 你这样做,别人也会这样做 ...
- 到底如何配置 maven 编译插件的 JDK 版本
千言万语不及官方文档,详情请阅读 compiler:compile 文档 配置 maven 编译插件的 JDK 版本 maven 编译插件(maven-compiler-plugin)有默认编译 JD ...
- MapInfo常见数据格式
在MapInfo 中所指的表是单纯的数据表或是图形与数据的结合.一个典型的MapInfo表将主要由*.tab.*.dat.*.wks.*.dbf.*.xls.*.map.*.id.*.ind文件格式组 ...
- Springboot2.1.1下的自定义拦截器而静态资源不能访问的问题
1.项目结构 2.自定义拦截器 public class LoginHandlerlnterceptor implements HandlerInterceptor { //目标方法执行之前 @Ove ...
- python循环语句(while和for)
循环语句分成两种,while循环 和 for循环 作用:可以使指定的代码块重复指定的次数 while循环: # 语法: # while 条件表达式 : # 代码块 # else : # 代码块 # 执 ...
- AVR单片机教程——LCD1602
本文隶属于AVR单片机教程系列. 显示屏 开发板套件里有两块屏幕,大的是LCD(液晶显示),小的是OLED(有机发光二极管).正与你所想的相反,短小精悍的比较贵,而本讲的主题--LCD1602-- ...
- python 验证客户端的合法性
目的:对连接服务器的客户端进行判断 # Server import socket import hmac import os secret_key = bytes('tom', encoding='u ...
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...