HDU 3823 Prime Friend(线性欧拉筛+打表)
So an integer has many prime friends, for example, 1 has infinite prime friends: 1, 2, 4, 6, 10 and so on. This problem is very simple, given two integers A and B, find the minimum common prime friend which will make them not only become primes but also prime neighbor. We say C and D is prime neighbor only when both of them are primes and integer(s) between them is/are not.
InputThe first line contains a single integer T, indicating the number of test cases.
Each test case only contains two integers A and B.
Technical Specification
1. 1 <= T <= 1000
2. 1 <= A, B <= 150OutputFor each test case, output the case number first, then the minimum common prime friend of A and B, if not such number exists, output -1.Sample Input
2
2 4
3 6
Sample Output
Case 1: 1
Case 2: -1 题意:给出两个整数ab 使a+x b+x均为素数 且ab之间没有素数 求最小的符合条件的x 思路:java数组开大了就爆空间,注意空间;一个潜在条件a+x-(b+x)=a-b<150,即两个素数之差小于150; 代码:
import java.util.Scanner;
public class Main {
static final int max=(int)16000000;
static int prime[]=new int[1031131];
static boolean is_prime[]=new boolean[max];
static int k=0;
public static void Prime(){
is_prime[0]=is_prime[1]=true;
for(int i=2;i<max;i++){
if(!is_prime[i]) prime[k++]=i;
for(int j=0;j<k&&prime[j]*i<max;j++){
is_prime[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
public static void main(String[] args) {
Prime();
// System.out.println(k);
Scanner scan=new Scanner(System.in);
int t=scan.nextInt();
for(int i=1;i<=t;i++){
int a=scan.nextInt();
int b=scan.nextInt();
if(a>b) {
int tmp=a;
a=b;
b=tmp;
}
System.out.print("Case "+i+": ");
boolean flag=false;
int num=0;
for(int j=0;j<k-1;j++){
if(prime[j]>=a && prime[j+1]>=b &&prime[j]-a==prime[j+1]-b &&prime[j+1]-prime[j]<150){
num=prime[j]-a;
flag=true;
break;
}
}
if(flag) System.out.println(num);
else System.out.println("-1");
}
}
}
HDU 3823 Prime Friend(线性欧拉筛+打表)的更多相关文章
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu3572线性欧拉筛
用线性筛来筛,复杂度O(n) #include<bits/stdc++.h> #include<ext/rope> #define fi first #define se se ...
- BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)
标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...
- Goldbach's Conjecture POJ - 2262 线性欧拉筛水题 哥德巴赫猜想
题意 哥德巴赫猜想:任一大于2的数都可以分为两个质数之和 给一个n 分成两个质数之和 线行筛打表即可 可以拿一个数组当桶标记一下a[i] i这个数是不是素数 在线性筛后面加个装桶循环即可 #inc ...
- Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)
题意:给一个数 可以写出多少种 连续素数的合 思路:直接线性筛 筛素数 暴力找就行 (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...
- Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛
题意 给出a d n 给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...
- BZOJ 2190 SDOI 2008 仪仗队 线性欧拉筛
标题效果:有一个格子组件图,假设三个人在一条直线上,那么第一个人将不会看到第三人.现在,有一个人站在(1,1)在.我问他是否能看到n*n的人数的矩阵. 思考:如果你想站(1,1)这名男子看到了一个立场 ...
- The Embarrassed Cryptographer POJ - 2635 同余模+高精度处理 +线性欧拉筛(每n位一起处理)
题意:给出两数乘积K(1e100) 和 一个数L(1e6) 问有没有小于L(不能等于)的素数是K的因数 思路:把数K切割 用1000进制表示 由同余模公式知 k%x=(a*1000%x+b* ...
随机推荐
- 通过otter元数据表获取有用的信息
获取数据源相关信息 原始数据: +----+------+-------+--------------------------------------------------------------- ...
- Codeforces Round #616 (Div. 2) B. Array Sharpening
t题目链接:http://codeforces.com/contest/1291/problem/B 思路: 用极端的情况去考虑问题,会变得很简单. 无论是单调递增,单调递减,或者中间高两边低的情况都 ...
- wa自动机 的 莫队 刷题记录
洛谷P2709小B的询问 莫队裸题,模板题 莫队就是把询问区间排个序,先按左端点的Pos排序(POS是分块那个数组),pos一样的按右端点排序 代码: #include <bits/stdc++ ...
- Appium学习1-安装
Appium简介 Appium 是一个开源的.跨平台的测试框架,可以用来测试 Native App.混合应用.移动 Web 应用(H5 应用)等,也是当下互联网企业实现移动自动化测试的重要工具.App ...
- [CF1216C] White Sheet - 离散化,模拟
虽然分类讨论应该是比较推崇的解法,但是我就是喜欢暴力 #include <bits/stdc++.h> using namespace std; #define int long long ...
- B站学习记:贪心与博弈
贪心 1. poj2287 N匹马的田忌赛马问题 稳稳地赢. 寻找最优的方案. 更优的收益. 有时候,局部最优导致全局最优. 马的能力值. 使得让我赢的局数最多. 对于对方的任何一匹马,如果我的马能打 ...
- 0004 继承django系统用户表
1 创建基础模型 在本项目中,所有表都有两个自动产生的完全相同的字段,即创建时间和更新时间,因此,可以创建一个基础模型,让所有的表都来继承这个模型. 找到工程目录下的PublicMethod目录,创建 ...
- jdk8-》joining、groupingBy、summarizingInt函数
拼接函数 Collectors.joining // 3种重载方法 Collectors.joining() Collectors.joining("拼接符") Collector ...
- C++-POJ1995-Raising Modulo Numbers[快速幂]
#include <cstdio> typedef long long ll; int quick_pow(ll a,ll b,ll mod){ ll ans=; ))ans=(ans*a ...
- wcf编程资料
如下为WCF编辑资料 链接:https://pan.baidu.com/s/1kZnc6eNOfEggHSfJNXj8Ag 提取码:gj7s 复制这段内容后打开百度网盘手机App,操作更方便哦 第01 ...