bzoj1003物流运输

题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入格式

第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

样例

样例输入

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

样例输出

32

样例解释

上图依次表示第 1 至第 5 天的情况,阴影表示不可用的码头。

最优方案为:前三天走 1→4→5,后两天走 1→3→5,这样总成本为 (2+2)×3+(3+2)×2+10=32

题解:这道题真心不难,拿来复习一下最短路和dp

我们设cost[i][j]表示i到j这个时间段不换航线的情况下的最小花费,

则:cost[i][j]=dis[m]*(j-i+1),dis[m]是i到j时段起点到终点的最短路

dp[i]表示前i天的最小花费

则:dp[i]=min(dp[j]+k+cost[j+1][i]),j<i;

最后输出dp[n]即可

ps:一开始TLE最后发现是数组开小了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define re register
#define MAXN 2005
#define MAXM 205
using namespace std;
int n, m, k, e, d, ans = 0, cost[MAXN][MAXN]; // cost[i][j]表示i到j这个时间段不换航线的情况下的最小花费
bool stop[MAXM][MAXN]; // stop[i][j]=1表示码头i在第j天不可用
int to[MAXN << 1], nxt[MAXN << 1], w[MAXN << 1], pre[MAXM], tot_e = 0;
void add(int u, int v, int val) {
tot_e++, w[tot_e] = val, to[tot_e] = v, nxt[tot_e] = pre[u], pre[u] = tot_e;
}
int dis[MAXN];
bool vis[MAXN], lim[MAXN];
queue<int> q;
int spfa(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
memset(lim, 0, sizeof(lim));
for (int i = 1; i <= m; i++)
for (int j = s; j <= t; j++)
if (stop[i][j])
lim[i] = 1;
q.push(1);
vis[1] = 1, dis[1] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = pre[x]; i; i = nxt[i]) {
int y = to[i];
if (lim[y])
continue;
if (dis[y] > dis[x] + w[i]) {
dis[y] = dis[x] + w[i];
if (!vis[y]) {
q.push(y);
vis[y] = 1;
}
}
}
vis[x] = 0;
}
return dis[m];
}
int dp[MAXN]; // dp[i]表示前i天的最小花费
int main() {
scanf("%d%d%d%d", &n, &m, &k, &e);
for (int i = 1, u, v, w; i <= e; i++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w), add(v, u, w);
}
scanf("%d", &d);
for (int i = 1, p, a, b; i <= d; i++) {
scanf("%d%d%d", &p, &a, &b);
for (int j = a; j <= b; j++) stop[p][j] = 1;
}
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++) {
cost[i][j] = spfa(i, j);
if (cost[i][j] != 0x3f3f3f3f)
cost[i][j] *= (j - i + 1);
}
memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i <= n; i++) {
dp[i] = cost[1][i];
for (int j = 1; j < i; j++) {
if (cost[j + 1][i] != 0x3f3f3f3f)
dp[i] = min(dp[i], dp[j] + k + cost[j + 1][i]);
}
}
printf("%d", dp[n]);
return 0;
}

bzoj1003物流运输 最短路+DP的更多相关文章

  1. BZOJ1003 物流运输 最短路+DP

    1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...

  2. BZOJ-1003 物流运输trans SPFA+DP

    傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...

  3. P1772 [ZJOI2006]物流运输 最短路+DP

    思路:最短路+DP 提交:1次 题解: $f[i]$表示到第$i$天的最小代价,我们可以预先处理出$i,j$两天之间(包括$i,j$)都可通行的最短路的代价记做$s[i][j]$,然后有$f[i]=m ...

  4. [bzoj1003][ZJOI2006][物流运输] (最短路+dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  5. BZOJ 1003 - 物流运输 - [最短路+dp]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 Time Limit: 10 Sec Memory Limit: 162 MB D ...

  6. 物流运输(最短路+dp)

    这道题是相当的火,但是在tyher的讲解下我一遍就AC了!!! Part 1 理解题目 从第一天到最后一天,总会有一些点莫名其妙地走不了,所以导致我们不能按照上一次的最短路一直运输得到最少费用,而需要 ...

  7. 1003: [ZJOI2006]物流运输 最短路+dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=1003 数据范围很小,怎么瞎搞都行,n方dp,然后跑出最短路暴力转移,需要注意的是不能使用的可能有多 ...

  8. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  9. BZOJ 1003 物流运输trans dijstra+dp

    1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3896  Solved: 1608[Submit] ...

随机推荐

  1. 分析post与json

    寻找登录的post地址 在form表单中寻找action对应的url地址 post的数据是input标签中name的值作为键,真正的用户名密码作为值的字典,post的url地址就是action对应的u ...

  2. vue双向绑定的原理

    什么是双向数据绑定?Vue是一个MVVM框架,数据绑定简单来说,就是当数据发生变化时,相应的视图会进行更新,当视图更新时,数据也会跟着变化. 实现数据绑定的方式大致有以下几种: - 1.发布者-订阅者 ...

  3. VS2010-MFC(常用控件:滚动条控件Scroll Bar)

    转自:http://www.jizhuomi.com/software/191.html 滚动条控件简介 滚动条大家也很熟悉了,Windows窗口中很多都有滚动条.前面讲的列表框和组合框设置了相应属性 ...

  4. UVA-307-Sticks-dfs+剪枝

    George took sticks of the same length and cut them randomly until all parts became at most 50 units ...

  5. Mysql优化系列之查询性能优化前篇3(必须知道的几个事实)

    事实一:临时表没有任何索引 最常见的临时表莫过于在from子句中写子查询,遇到这种情况,Mysql会先将其查询结果放到一张临时表中, 然后将这个临时表当做普通表对待 事实二:执行计划优化 大多数的sq ...

  6. CSS 实现自适应正方形

    在处理移动端页面时,我们有时会需要将banner图做成与屏幕等宽的正方形以获得最佳的体验效果,比如,商品详情页, 方法1.CSS3 vw单位 CSS3 中新增了一组相对于可视区域百分比的长度单位 vw ...

  7. Java 11 发布计划来了,已确定 3个 新特性!!

    Oracle 已经发布了 Java Development Kit 10,下一个版本 JDK 11 也在准备之中了.按照 Java 新的版本发布标准,Java 11 将在 6 个月后到来,现在它还只有 ...

  8. python函数基础(函数的定义和调用)

    函数的定义 python定义函数使用def关键字 return[表达式]语句用于退出函数,选择性的向调用方返回一个表达式,不带参数值的return语句返回none def 函数名(参数列表): 函数体 ...

  9. CSS三大特性之继承性

    1.并不是所有的属性都可以继承,只有以color/font/text/line开头的属性 才可以继承. 2.在CSS的继承中,不仅仅是儿子可以继承,只要是后代都可以继承. 3.继承中的特殊性 3.1  ...

  10. java中的Math类

    一般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte.int.long.double 等 在实际开发过程中,我们经常会遇到需要使用对象,而不是内置数据类型的情形.为了解决这个问题,Ja ...