bzoj1003物流运输 最短路+DP
bzoj1003物流运输
题目描述
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
输入格式
输出格式
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
样例
样例输入
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
样例输出
32
样例解释

上图依次表示第 1 至第 5 天的情况,阴影表示不可用的码头。
最优方案为:前三天走 1→4→5,后两天走 1→3→5,这样总成本为 (2+2)×3+(3+2)×2+10=32
题解:这道题真心不难,拿来复习一下最短路和dp
我们设cost[i][j]表示i到j这个时间段不换航线的情况下的最小花费,
则:cost[i][j]=dis[m]*(j-i+1),dis[m]是i到j时段起点到终点的最短路
dp[i]表示前i天的最小花费
则:dp[i]=min(dp[j]+k+cost[j+1][i]),j<i;
最后输出dp[n]即可
ps:一开始TLE最后发现是数组开小了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define re register
#define MAXN 2005
#define MAXM 205
using namespace std;
int n, m, k, e, d, ans = 0, cost[MAXN][MAXN]; // cost[i][j]表示i到j这个时间段不换航线的情况下的最小花费
bool stop[MAXM][MAXN]; // stop[i][j]=1表示码头i在第j天不可用
int to[MAXN << 1], nxt[MAXN << 1], w[MAXN << 1], pre[MAXM], tot_e = 0;
void add(int u, int v, int val) {
tot_e++, w[tot_e] = val, to[tot_e] = v, nxt[tot_e] = pre[u], pre[u] = tot_e;
}
int dis[MAXN];
bool vis[MAXN], lim[MAXN];
queue<int> q;
int spfa(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
memset(lim, 0, sizeof(lim));
for (int i = 1; i <= m; i++)
for (int j = s; j <= t; j++)
if (stop[i][j])
lim[i] = 1;
q.push(1);
vis[1] = 1, dis[1] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = pre[x]; i; i = nxt[i]) {
int y = to[i];
if (lim[y])
continue;
if (dis[y] > dis[x] + w[i]) {
dis[y] = dis[x] + w[i];
if (!vis[y]) {
q.push(y);
vis[y] = 1;
}
}
}
vis[x] = 0;
}
return dis[m];
}
int dp[MAXN]; // dp[i]表示前i天的最小花费
int main() {
scanf("%d%d%d%d", &n, &m, &k, &e);
for (int i = 1, u, v, w; i <= e; i++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w), add(v, u, w);
}
scanf("%d", &d);
for (int i = 1, p, a, b; i <= d; i++) {
scanf("%d%d%d", &p, &a, &b);
for (int j = a; j <= b; j++) stop[p][j] = 1;
}
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++) {
cost[i][j] = spfa(i, j);
if (cost[i][j] != 0x3f3f3f3f)
cost[i][j] *= (j - i + 1);
}
memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i <= n; i++) {
dp[i] = cost[1][i];
for (int j = 1; j < i; j++) {
if (cost[j + 1][i] != 0x3f3f3f3f)
dp[i] = min(dp[i], dp[j] + k + cost[j + 1][i]);
}
}
printf("%d", dp[n]);
return 0;
}
bzoj1003物流运输 最短路+DP的更多相关文章
- BZOJ1003 物流运输 最短路+DP
1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...
- BZOJ-1003 物流运输trans SPFA+DP
傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...
- P1772 [ZJOI2006]物流运输 最短路+DP
思路:最短路+DP 提交:1次 题解: $f[i]$表示到第$i$天的最小代价,我们可以预先处理出$i,j$两天之间(包括$i,j$)都可通行的最短路的代价记做$s[i][j]$,然后有$f[i]=m ...
- [bzoj1003][ZJOI2006][物流运输] (最短路+dp)
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
- BZOJ 1003 - 物流运输 - [最短路+dp]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 Time Limit: 10 Sec Memory Limit: 162 MB D ...
- 物流运输(最短路+dp)
这道题是相当的火,但是在tyher的讲解下我一遍就AC了!!! Part 1 理解题目 从第一天到最后一天,总会有一些点莫名其妙地走不了,所以导致我们不能按照上一次的最短路一直运输得到最少费用,而需要 ...
- 1003: [ZJOI2006]物流运输 最短路+dp
https://www.lydsy.com/JudgeOnline/problem.php?id=1003 数据范围很小,怎么瞎搞都行,n方dp,然后跑出最短路暴力转移,需要注意的是不能使用的可能有多 ...
- 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp
「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...
- BZOJ 1003 物流运输trans dijstra+dp
1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3896 Solved: 1608[Submit] ...
随机推荐
- TopCoder[SRM513 DIV 1]:PerfectMemory(500)
Problem Statement You might have played the game called Memoria. In this game, there is a board ...
- 各种版本mysql驱动包下载地址
http://central.maven.org/maven2/mysql/mysql-connector-java/
- 第三周课堂笔记4thand5th
循环打印 #计算字典中的键值对的个数 print(len(a)) #获取字典中键的列表 print(a.keys()) #获取字典中值的列表 print(a.values()) #获取字典中键值对的个 ...
- python Six 模块
Six模块用于python2和python3的兼容 import six 官网链接:https://six.readthedocs.io/
- java笔试之放苹果
题目描述:M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 输入:每个用例包含二个整数M和N.0<=m< ...
- CVE-2016-0095提权漏洞分析
1 前言 瞻仰了k0shl和鹏哥 的漏洞分析,感慨万千,任重而道远. 2 系统环境和工具 windows 7 32旗舰版 windbg 3 poc 3.1poc复现 首先k0shl大佬给出的poc() ...
- spring:AOP面向切面编程02
参考: https://blog.csdn.net/jeffleo/article/details/54136904 一.AOP的核心概念AOP(Aspect Oriented Programming ...
- Python全栈开发:线程代码实例
#进程与线程的关系 """ 多进程(主进程,子进程): 优点:能同时利用多个CPU,进行多个操作,提高效率. 缺点:耗费内存资源(进程要开辟内存空间),进程不是越多越好, ...
- Python+Selenium基础入门及实践
Python+Selenium基础入门及实践 32018.08.29 11:21:52字数 3220阅读 23422 一.Selenium+Python环境搭建及配置 1.1 selenium 介绍 ...
- Longge's problem
Longge's problem 求\(\sum_{i=1}^ngcd(i,n)\),\(n< 2^{31}\). 解 理解1: 注意式子的实际意义,显然答案只可能在n的约数中,而现在问题变成了 ...