题目描述

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

 
 
大意就是求1到n之间的最短路径,由于点的个数只有1000,O(N^2)dijkstra的算法即可解决。
代码如下
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std; const int INF=2e9;
int V,E;
int d[];
int cost[][];
int used[];
void dijkstra(int s)
{ for(int i=;i<=V;i++)
{
used[i]=;
d[i]=INF;
}
d[s]=;
int minn,v;
for(int i=;i<=V;i++)
{
minn=INF;
v=-;
for(int j=;j<=V;j++)
{
if(!used[j]&&d[j]<minn)
{
minn=d[j];
v=j;
}
}
used[v]=;
for(int j=;j<=V;j++)
{
if((!used[j])&&(d[j]>cost[v][j]+d[v]))
{
d[j]=cost[v][j]+d[v];
}
}
}
}
int main()
{
cin>>E>>V;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
cost[i][j]=INF;
if(i==j)
cost[i][j]=;
}
}
for(int i=;i<=E;i++)
{
int s,t,cos;
cin>>s>>t>>cos;
if(cos<cost[s][t])
{
cost[s][t]=cos;
cost[t][s]=cos;
}
}
dijkstra();
printf("%d\n",d[V]);
return ;
}

poj2387- Til the Cows Come Home(最短路板子题)的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  3. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  4. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  5. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  6. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

  7. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  8. (Dijkstra) POJ2387 Til the Cows Come Home

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 81024   Accepted ...

  9. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  10. POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)

    原题链接:Til the Cows Come Home 题目大意:有  个点,给出从  点到  点的距离并且  和  是互相可以抵达的,问从  到  的最短距离. 题目分析:这是一道典型的最短路径模版 ...

随机推荐

  1. linux入门系列14--ssh服务及主机远程管理

    通过前面十余篇文章的介绍,相信已经初步入门Linux本地管理的基本方法了,后续的文章将介绍Linux中常用的服务部署以及如何为外部提供相应的服务. 系列文章第三篇"linux入门系列3--l ...

  2. Android更改popupmenu背景并显示图标

    似乎popupmenu是无法单独设置style的,好像是由context决定的,前几天需要设置style,找了很久才找一一个办法,似乎是通过 ContextThemeWrapper 包装一个 Cont ...

  3. vuex 状态管理 入门

    vuex是什么 是一个对 数据状态实现集中式管理 的工具.可以解决组件之间传递的问题 多组件共享状态(变量),有一个数据好多组件都用 组件数大于2,任何一个组件修改其他组件都要改变 实现组件通信 St ...

  4. C# 四则运算及省市选择及日月选择

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  5. C#上位机之—WinForm实现串口通信示例

    上位机开发常用到串口通信来控制设备,串口通信的主要参数:COM口,波特率(9600),停止位(One),数据位(8),校验位(None),括号中的是常用值,具体意思我也不太懂,会用能实现功能就行哈哈: ...

  6. Winfom 使用 BackgroundWorker 实现进度条

    BackgroundWorker 简介(来自百度) BackgroundWorker是·net里用来执行多线程任务的控件,它允许编程者在一个单独的线程上执行一些操作.耗时的操作(如下载和数据库事务)在 ...

  7. 定时器_在.net core3.0 webapi中添加自定义定时器功能

    前言:想在.net framework环境使用自定义定时器的话,参考我的另一篇文章:https://www.cnblogs.com/lxhbky/p/10242839.html 想在.net core ...

  8. 洛谷P1063能量项链(区间dp)

    题目描述: 给定一串序列x[],其中的每一个Xi看作看作一颗珠子,每个珠子包含两个参数,head和tail,前一颗的tail值是后一个的head值,珠子呈现环形(是一条项链),所以最后一颗的tail是 ...

  9. 数据结构实验之栈与队列十一:refresh的停车场

    数据结构实验之栈与队列十一:refresh的停车场 Description refresh最近发了一笔横财,开了一家停车场.由于土地有限,停车场内停车数量有限,但是要求进停车场的车辆过多.当停车场满时 ...

  10. Python 3.8 已发布,现在是切换至新版本的好时机吗?

    Python 3.8 已于前两周正式发布,不过目前大多数开发者主要使用的仍是 Python 3.7.x 或更旧的版本. ! 事实上,立刻切换到使用 Python 3.8 可能会引发一些问题.想知道何时 ...