题目描述

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

 
 
大意就是求1到n之间的最短路径,由于点的个数只有1000,O(N^2)dijkstra的算法即可解决。
代码如下
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std; const int INF=2e9;
int V,E;
int d[];
int cost[][];
int used[];
void dijkstra(int s)
{ for(int i=;i<=V;i++)
{
used[i]=;
d[i]=INF;
}
d[s]=;
int minn,v;
for(int i=;i<=V;i++)
{
minn=INF;
v=-;
for(int j=;j<=V;j++)
{
if(!used[j]&&d[j]<minn)
{
minn=d[j];
v=j;
}
}
used[v]=;
for(int j=;j<=V;j++)
{
if((!used[j])&&(d[j]>cost[v][j]+d[v]))
{
d[j]=cost[v][j]+d[v];
}
}
}
}
int main()
{
cin>>E>>V;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
cost[i][j]=INF;
if(i==j)
cost[i][j]=;
}
}
for(int i=;i<=E;i++)
{
int s,t,cos;
cin>>s>>t>>cos;
if(cos<cost[s][t])
{
cost[s][t]=cos;
cost[t][s]=cos;
}
}
dijkstra();
printf("%d\n",d[V]);
return ;
}

poj2387- Til the Cows Come Home(最短路板子题)的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  3. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  4. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  5. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  6. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

  7. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  8. (Dijkstra) POJ2387 Til the Cows Come Home

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 81024   Accepted ...

  9. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  10. POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)

    原题链接:Til the Cows Come Home 题目大意:有  个点,给出从  点到  点的距离并且  和  是互相可以抵达的,问从  到  的最短距离. 题目分析:这是一道典型的最短路径模版 ...

随机推荐

  1. mysql出现 Unknown column 'Password' in 'field list'

    linux安装了mysql之后初始化密码获取:出现了下面的内容,密码很尴尬,无法用root登录: grep 'temporary password' /var/log/mysqld.log [Note ...

  2. js中的innerHTML,innerText,value的区别

    首先先说一下 我自己认为的 innerHTML,innerText,value的区别 innerHTML 是在控件中加html代码 就是设置一个元素里面的HTML eg: <html> & ...

  3. 前后端API交互如何保证数据安全性?(转)

    前言 前后端分离的开发方式,我们以接口为标准来进行推动,定义好接口,各自开发自己的功能,最后进行联调整合.无论是开发原生的APP还是webapp还是PC端的软件,只要是前后端分离的模式,就避免不了调用 ...

  4. UML之三、建模元素(2)

    本章继续介绍建模元素 https://blog.csdn.net/bit_kaki/article/details/78471760 1:边界 任何一个对象都有一个边界,外界只能通过这个边界来认识对象 ...

  5. 带输入提示的搜索框ajax请求

    先放图 首先要引用的文件有: base.css  https://www.cnblogs.com/chenyingying0/p/12363689.html jquery.js transition. ...

  6. 12-Factor与云原生Part2

    12-Factor与云原生Part2 12-Factor 为构建如下的 SaaS 应用提供了方法论: 使用声明式格式来搭建自动化,从而使新的开发者花费最少的学习成本加入这个项目 和底层操作系统保持简洁 ...

  7. mysql必知必会--用正则表达式 进行搜索

    正则表达式介绍 前两章中的过滤例子允许用匹配.比较和通配操作符寻找数据.对 于基本的过滤(或者甚至是某些不那么基本的过滤),这样就足够了.但 随着过滤条件的复杂性的增加, WHERE 子句本身的复杂性 ...

  8. Django2.2 静态文件的上传显示,遇到的坑点-------已解决

    前情提要:这里虽说是Django2.2 ,但经过测试发现Django 的其他版本也可以用此方法解决 一.项目根目录下的static文件的路由显示问题 在项目根目录下创建静态文件时发现,即使我配置了se ...

  9. mysql 连接查询 转换group_concat, find_in_set

    1.a表 2.b表 3.连接(a_u_id 对应b表的b_id) select a.a_id,a.a_u_id,group_concat(b.b_name) from a_tb a left join ...

  10. java.lang.ClassCastException:java.util.LinkedHashMap不能转换为com.testing.models.xxx

    后台接收前台的json字符串 转pojo 问题(Object 对应定义的pojo) ObjectMapper mapper=new ObjectMapper(); Object object = ma ...