超简单!pytorch入门教程(三):构造一个小型CNN
torch.nn只接受mini-batch的输入,也就是说我们输入的时候是必须是好几张图片同时输入。
例如:nn. Conv2d 允许输入4维的Tensor:n个样本 x n个色彩频道 x 高度 x 宽度
#coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable class Net(nn.Module):
#定义Net的初始化函数,这个函数定义了该神经网络的基本结构
def __init__(self):
super(Net, self).__init__() #复制并使用Net的父类的初始化方法,即先运行nn.Module的初始化函数
self.conv1 = nn.Conv2d(1, 6, 5) # 定义conv1函数的是图像卷积函数:输入为图像(1个频道,即灰度图),输出为 6张特征图, 卷积核为5x5正方形
self.conv2 = nn.Conv2d(6, 16, 5)# 定义conv2函数的是图像卷积函数:输入为6张特征图,输出为16张特征图, 卷积核为5x5正方形
self.fc1 = nn.Linear(16*5*5, 120) # 定义fc1(fullconnect)全连接函数1为线性函数:y = Wx + b,并将16*5*5个节点连接到120个节点上。
self.fc2 = nn.Linear(120, 84)#定义fc2(fullconnect)全连接函数2为线性函数:y = Wx + b,并将120个节点连接到84个节点上。
self.fc3 = nn.Linear(84, 10)#定义fc3(fullconnect)全连接函数3为线性函数:y = Wx + b,并将84个节点连接到10个节点上。 #定义该神经网络的向前传播函数,该函数必须定义,一旦定义成功,向后传播函数也会自动生成(autograd)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) #输入x经过卷积conv1之后,经过激活函数ReLU(原来这个词是激活函数的意思),使用2x2的窗口进行最大池化Max pooling,然后更新到x。
x = F.max_pool2d(F.relu(self.conv2(x)), 2) #输入x经过卷积conv2之后,经过激活函数ReLU,使用2x2的窗口进行最大池化Max pooling,然后更新到x。
x = x.view(-1, self.num_flat_features(x)) #view函数将张量x变形成一维的向量形式,总特征数并不改变,为接下来的全连接作准备。
x = F.relu(self.fc1(x)) #输入x经过全连接1,再经过ReLU激活函数,然后更新x
x = F.relu(self.fc2(x)) #输入x经过全连接2,再经过ReLU激活函数,然后更新x
x = self.fc3(x) #输入x经过全连接3,然后更新x
return x #使用num_flat_features函数计算张量x的总特征量(把每个数字都看出是一个特征,即特征总量),比如x是4*2*2的张量,那么它的特征总量就是16。
def num_flat_features(self, x):
size = x.size()[1:] # 这里为什么要使用[1:],是因为pytorch只接受批输入,也就是说一次性输入好几张图片,那么输入数据张量的维度自然上升到了4维。【1:】让我们把注意力放在后3维上面
num_features = 1
for s in size:
num_features *= s
return num_features net = Net()
net # 以下代码是为了看一下我们需要训练的参数的数量
print net
params = list(net.parameters()) k=0
for i in params:
l =1
print "该层的结构:"+str(list(i.size()))
for j in i.size():
l *= j
print "参数和:"+str(l)
k = k+l print "总参数和:"+ str(k)
超简单!pytorch入门教程(三):构造一个小型CNN的更多相关文章
- 超简单!pytorch入门教程(五):训练和测试CNN
我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一 ...
- 超强、超详细Redis入门教程【转】
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...
- 超详细Redis入门教程【转】
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么 2.redis的作者何许人也 3.谁在使 ...
- Elasticsearch入门教程(三):Elasticsearch索引&映射
原文:Elasticsearch入门教程(三):Elasticsearch索引&映射 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文 ...
- RabbitMQ入门教程(三):Hello World
原文:RabbitMQ入门教程(三):Hello World 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog. ...
- 无废话ExtJs 入门教程三[窗体:Window组件]
无废话ExtJs 入门教程三[窗体:Window组件] extjs技术交流,欢迎加群(201926085) 1.代码如下: 1 <!DOCTYPE html PUBLIC "-//W3 ...
- MongoDB最简单的入门教程之二 使用nodejs访问MongoDB
在前一篇教程 MongoDB最简单的入门教程之一 环境搭建 里,我们已经完成了MongoDB的环境搭建. 在localhost:27017的服务器上,在数据库admin下面创建了一个名为person的 ...
- MongoDB最简单的入门教程之三 使用Java代码往MongoDB里插入数据
前两篇教程我们介绍了如何搭建MongoDB的本地环境: MongoDB最简单的入门教程之一 环境搭建 以及如何用nodejs读取MongoDB里的记录: MongoDB最简单的入门教程之二 使用nod ...
- MongoDB最简单的入门教程之四:使用Spring Boot操作MongoDB
Spring Boot 是一个轻量级框架,可以完成基于 Spring 的应用程序的大部分配置工作.Spring Boot的目的是提供一组工具,以便快速构建容易配置的Spring应用程序,省去大量传统S ...
随机推荐
- php代码在模板页的活用
- form表单提交,后台怎么获取select的值?后台直接获取即可,和input方式一样。
form表单提交,后台怎么获取select的值? 后台直接获取即可,和后台获取input的值方式一样. form提交后,后台直接根据select的name获取即可,即getPara("XXX ...
- 12 将类处理为excel,再将excel处理为类(界限计划3)
中间使用map作为中间处理 将类处理为excel: 1.读取类转为map //读取btl,转为map public static Map getBtlMap(String rule, BTLDAO b ...
- 使用jQuery的 autocomplete 实现输入框 自动提示补全
参考网址: https://www.cnblogs.com/jinzhiming/p/6768402.html 插件下载地址: 链接:https://pan.baidu.com/s/1SpP3hixZ ...
- Python学习之路6☞函数,递归,内置函数
一python中的函数 函数是逻辑结构化和过程化的一种编程方法. python中函数定义方法: def test(x): "The function definitions" x+ ...
- Nova中的Hook机制
Nova的代码中支持Hook机制,也就是在某些函数的前后,可以加入自己的代码逻辑.Hook代码可以完全独立于Nova开发,本质上使用setuptools的entry points机制.K版本的Open ...
- Android 错误:IllegalStateException: Can not perform this action after onSaveInstanceState
今天做Fragment切换.状态保存功能的时候,出现了这个错误: E/AndroidRuntime(12747): Caused by: java.lang.IllegalStateException ...
- 带你进入 Activiti 工作流的世界
Activiti 是一个针对企业用户.开发人员 .系统管理员的轻量级工作流业务管理平台,其核心是使用 java 开发的快速 . 稳定的 BPMN2.0 流程引擎 .它可以与 spring 完美集成. ...
- uva 100 The 3n + 1 problem (RMQ)
uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...
- jq操作class类
https://www.cnblogs.com/sandraryan/ 鼠标移入移除切换样式 方法一: css .menu { color: green; } .active { color: red ...