BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
点(i,j)的损失值为\(2*gcd(i,j)-1\),所有在n行m列区域内的总损失值为:
\]
\]
也就是说我们只需求解出\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\),即可解决这个问题。
因为一个数的所有因子的欧拉函数之和等于这个数。
\]
可转换为
\]
上式交换顺序可得
\]
因为\(\sum_{i=1}^nd|i=n/d\),\(1\)到\(n\)中能被d整除的有\(n/d\)个,所以上式等于
\]
所以我们只需要预处理\(1e5\)以内的欧拉函数即可。
代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+10;
ll phi[N];
void init(int n)
{
for(int i=1;i<=n;i++)
{
phi[i]=i;
}
for(int i=2;i<=n;i++)
{
if(phi[i]==i)
{
for(int j=i;j<=n;j+=i)
{
phi[j]=phi[j]/i*(i-1);
}
}
}
}
int main()
{
ll n,m;
ll ans=0;
cin>>n>>m;
init(1e5);
for(ll d=1;d<=min(n,m);d++)
{
ans+=(n/d)*(m/d)*phi[d];
}
ans=ans*2;
ans-=n*m;
cout<<ans<<"\n";
return 0;
}
BZOJ2005: [Noi2010]能量采集(欧拉函数)的更多相关文章
- 【BZOJ2005】[Noi2010]能量采集 欧拉函数
[BZOJ2005][Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
- luogu P1447 [NOI2010]能量采集 欧拉反演
题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集
http://blog.csdn.net/Clove_unique/article/details/51089272 Key:1.连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点. ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
随机推荐
- 自己动手开发手机APP控制西门子200smart 教程(原创干货)
自己动手开发手机APP控制西门子200smart 教程(原创干货) 自己动手开发手机APP控制西门子200smart 教程(原创干货) 2020-02-09 19:06:45 自己动手开发手机AP ...
- 引入Activiti配置文件activiti.cfg.xml
前面我们用代码实现了生成25张activiti表,今天我们用Activiti提供的activiti.cfg.xml配置文件来简化实现前面的功能: 官方文档参考地址:http://activiti.or ...
- SendInput模拟键盘操作
#include <windows.h> int main() { HWND parentHwnd, childHwnd; INPUT input[4]; parentHwnd = Fin ...
- virtualbox更新完无法启动的问题(不能为虚拟电脑 Ubuntu 打开一个新任务)
具体错误: 不能为虚拟电脑 Ubuntu 打开一个新任务. VT-x is disabled in the BIOS. (VERR_VMX_MSR_VMXON_DISABLED). 返回 代码: E_ ...
- 在4K屏下以超过VMWare默认的最高分辨率运行Linux系统
前言 4K 屏,有其优点也有其弊端.优点就是分辨率高,字体和图标看起来如丝一般顺滑:缺点就是字体和图标小,费眼睛.解决这个缺点的方法也很简单粗暴,就是将系统的显示比例放大.在高分屏不很普及的时候,无论 ...
- AI: 如何用钢笔工具画曲线
AI 可以用来绘制矢量图片. 点击钢笔工具,点击画图会画出直线,点击拖拉画图会画出曲线. 锚点的摆放位置在侧面而非顶端. 控制柄越长,图形越尖锐. 画圆时控制柄长度控制在两点之间1/3 长度. 使用的 ...
- 最大流-前置push-relabel算法实现
Front Push-Relabel Algorithm 接口定义 Input:容量数组vector<vector<int>> capacity ,大小为n:源点int sou ...
- 【python-leetcode713-双指针】乘积小于k的子数组
问题描述: 给定一个正整数数组 nums. 找出该数组内乘积小于 k 的连续的子数组的个数. 示例 1: 输入: nums = [10,5,2,6], k = 100输出: 8解释: 8个乘积小于10 ...
- SpringCloud五大神兽之Eureka
注册中心概述 什么是注册中心? 相当于服务之间的'通讯录',记录了服务和服务地址之间的映射关系.在分布式架构中服务会注册到这里.当服务需要调用其他服务时,就在注册中心找到其他服务的地址,进行调用 注册 ...
- scrapy的useragent与代理ip
scrapy中的useragent与代理ip 方法一: user-agent我们可以直接在settings.py中更改,如下图,这样修改比较简单,但是并不推荐,更推荐的方法是修改使用scrapy的中间 ...