"""
Function_1: 寻找水仙花数。
水仙花数也被称为超完全数字不变数、自恋数、自幂数、阿姆斯特朗数,
它是一个3位数,该数字每个位上数字的立方之和正好等于它本身,例如:$1^3 + 5^3+ 3^3=153$。
Time: 2020.1.28
Author: YaoXie
"""
# for i in range(100, 1000, 1):
# a = i % 10 # 求得个位数
# b = int(i / 100) # 求得百位数
# c = int(i / 10 % 10) # 求得十位数
# d = a ** 3 + b ** 3 + c ** 3
# if d == i:
# print(f'{i}是水仙花数') """
Function_2: 将一个正整数反转 Time: 2020.1.28
Author: YaoXie
"""
# # METHOD1
# while True:
# a = int(input("\n Enter a positive number: \n"))
# while a > 0:
# b = a % 10
# print(f'{b}', end="")
# a //= 10 # METHOD2: 骆昊的方法
# while True:
# num = int(input('num = '))
# reversed_num = 0
# while num > 0:
# reversed_num = reversed_num * 10 + num % 10  #关键点!
# num //= 10
# print(reversed_num) """
Function_3: 百钱百鸡问题。
公鸡5元一只,母鸡3元一只,小鸡1元三只,
用100块钱买一百只鸡,问公鸡、母鸡、小鸡各有多少只?
Time: 2020.1.28
Author: YaoXie
"""
# while True:
# num = int(input("请输入总数:\n"))
# count = 0
# for i in range(1, num+1):
# for j in range(1, num + 1):
# for k in range(1, num + 1):
# z = 5*i + 3*j + 1*k
# if z == num:
# print(f'公鸡:{i} 只,母鸡:{j} 只,小鸡:{k} 只')
# count += 1
# print(f'{num}元时,总共有{count}种买法') """
总结:上面所用的方法是————穷举法,也称为暴力搜索法,
通过列举,一项一项地判断,直到找出所有符合条件的选项
""" """
Function_4 生成斐波那契数列的前20个数。 特点:数列的前两个数都是1,
从第三个数开始,每个数都是它前面两个数的和,
形如:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...。 Time: 2018-03-02
Author: 骆昊
"""
# while True:
# fib = int(input("\n请输入要生成的个数:\n"))
# a = 0
# b = 1
# count = 0
# for _ in range(fib):
# a, b = b, a + b # 两数交换,即:b = a+b, a = b
# count += 1
# print(a, end=' ')
# if count % 5 == 0:
# print() """
Function_5: 找出10000以内的完美数。 完美数又称为完全数或完备数,
它的所有的真因子(即除了自身以外的因子)的和
(即因子函数)恰好等于它本身。
例如:6($6=1+2+3$)和28($28=1+2+4+7+14$)就是完美数。 Time: 2020.1.28
Author: YaoXie
"""
# while True:
# num = int(input('请输入数的范围:\n'))
# for i in range(2, num+1, 1):
# z = 0
# for j in range(1, i, 1):
# k = i % j
# if k == 0:
# z = z + j
# if z == i:
# print(f'完美数:{i} ') """
Version: 0.1
Author: 骆昊
Date: 2018-03-02 import math for num in range(1, 10000):
result = 0
for factor in range(1, int(math.sqrt(num)) + 1):
if num % factor == 0:
result += factor
# 敲重点!再此向罗大神膜拜!
if factor > 1 and num // factor != factor:
result += num // factor
if result == num:
print(num)
""" """
Function_6: 输出100以内所有的素数。 素数指的是只能被1和自身整除的正整数(不包括1)。 Time: 2020.1.28
Author: YaoXie
"""
# from math import sqrt
#
# while True:
# num = int(input('请输入数的范围:\n'))
# count = 0
# for j in range(2, num + 1):
# is_prime = True
# for i in range(2, int(sqrt(j)) + 1, 1):
# k = j % i
# if k == 0:
# is_prime = False
# break
# if is_prime:
# count += 1
# print(f'{j}', end=" ")
# if count % 5 == 0:
# print()
# print(f'\n总共有{count}个素数\n')

Python_3的更多相关文章

  1. [Python_3] Python 函数 & IO

    0. 说明 Python 函数 & IO 笔记,基于 Python 3.6.2 参考  Python: read(), readline()和readlines()使用方法及性能比较  Pyt ...

  2. python_3 :用python微信跳一跳

    [学习使用他人代码] 2018年01月21日 19:29:02 独行侠的守望 阅读数:319更多 个人分类: Python 编辑 版权声明:本文为博主原创文章,转载请注明文章链接. https://b ...

  3. python_3 装饰器参数之谜

    装饰器参数之谜 之前已经初步了解过装饰器了,知道了装饰器可以"偷梁换柱",在不改变函数的调用方式和函数内容的时候,而把函数的功能偷偷地修改. 那么问题来了,如果被修改的函数中有参数 ...

  4. python_3 装饰器之初次见面

    装饰器 定义:本质是函数,(只不过是用来装饰其他函数而已),就是为其他函数添加附加功能 原则: 1. 不能修改被修饰函数的源代码 2.不能修改被修饰函数的调用方式 实现装饰器的知识储备 1.函数即&q ...

  5. 虫师Selenium2+Python_3、Python基础

    P38--Python哲学 打开Python shell,输入import this,会看到下面的话: The Zen of Python, by Tim Peters   Beautiful is ...

  6. 神经网络学习-问题(二)-scipy未正确安装报DLL找不到的问题

    问题如下: E:\project\DL\python\keras>python keras_sample.pyUsing Theano backend.Traceback (most recen ...

  7. Python编程软件的安装与使用——Windows、Linux和Mac

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 最近,有读者透露:Python软件如何安装?为什么自己安装的软件会有各种"奇怪"的问题?据此,本 ...

  8. 关于 Docker 镜像的操作,看完这篇就够啦 !(下)

    紧接着上篇<关于 Docker 镜像的操作,看完这篇就够啦 !(上)>,奉上下篇 !!! 镜像作为 Docker 三大核心概念中最重要的一个关键词,它有很多操作,是您想学习容器技术不得不掌 ...

  9. Docker 导出&加载镜像

    文章首发自个人网站:https://www.exception.site/docker/docker-save-load-image 本文中,您将学习 Docker 如何导出&加载镜像.当我们 ...

随机推荐

  1. Codeforces_713_A

    http://codeforces.com/problemset/problem/713/A 将读入的数全都存为二进制,用map保存对应的个数. #include<iostream> #i ...

  2. python批量删除子文件夹中的空子文件夹

    例如A文件夹下有许多子文件夹,我需要获得的是子文件夹中的图片,但是现在子文件夹中不光有图片,还混入了空的文件夹(在使用OpenImages工具箱的时候,按照检索的方式下载的图片文件中是带有label的 ...

  3. java6循环结构二

    public class jh_01_回顾与作业点评 { public static void main(String[] args) { int val = 12345; System.out.pr ...

  4. EMC NW NMM to backup MS AG

    To use EMC NW NMM to backup MS SQL always on database, that is a simple and safe way to protector da ...

  5. 推荐算法之因子分解机(FM)

    在这篇文章我们将介绍因式分解机模型(FM),为行文方便后文均以FM表示.FM模型结合了支持向量机与因子分解模型的优点,并且能够用了回归.二分类以及排序任务,速度快,是推荐算法中召回与排序的利器.FM算 ...

  6. 排查 Kubernetes HPA 通过 Prometheus 获取不到 http_requests 指标的问题

    部署好了 kube-prometheus 与 k8s-prometheus-adapter (详见之前的博文 k8s 安装 prometheus 过程记录),使用下面的配置文件部署 HPA(Horiz ...

  7. docker device or resource busy

    docker-compose -f docker-compose.yml up -d  时候报错 device or resource busy 使用 docker-compose down 会导致一 ...

  8. LVS 部署

    一.LVS的组成 LVS 由2部分程序组成,包括 ipvs 和 ipvsadm. 1. ipvs(ip virtual server):一段代码工作在内核空间,叫ipvs,是真正生效实现调度的代码.2 ...

  9. linux硬盘分区、格式化、挂载超详细步骤(fdisk/parted))

  10. centos7.5下yum安装nginx-1.14.2

    rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm ...