MTT学习小记
这是个毒瘤题才有的毒瘤东西……奶一口NOI不考
拆系数FFT:
考虑做NTT时模数不是NTT模数(\(2^a*b+1\))怎么办?
很容易想到拆次数FFT。
比如说现在求\(a*b\),设\(m=\sqrt mo(2^{15})\)
那么把\(a[i]\)拆成\(a0[i]+a1[i]*m\),b[i]拆成\(b0[i]+b1[i]*m\)
那么\(a[i]*b[j]=a0[i]*b0[j]+(a0[i]*b1[j]+a1[i]*b0[j])*m+(a1[i]*b1[j])*m^2\)
由于\(a0,b1,b0,b1\)的大小都不到,所以FFT不会爆精度。
那么这个最好也需要4(正)+3(逆)=7,复杂度不能接受。
DFT:
一开始要做4次DFT,我们两两一起做。
假设现在有两个序列A、B,要求DFT(A)和DFT(B)
设\(P=A+B*i,Q=A-B*i\)
只用做P的DFT,便可得到Q的DFT。
\(DFT(Q)[n-i]=conj(DFT(P)[i])\),\(conj\)为共轭,就是把虚部系数取反。
证明:
\(conj(DFT(P)[i])\)
\(=conj(\sum_{j=0}^{n-1}w_n^{ji}*(A[i]+B[i]*\sqrt{-1})\)
\(=\sum_{j=0}^{n-1}conj(w_n^{ji})*conj(A[i]+B[i]*\sqrt{-1})\)
\(=\sum_{j=0}^{n-1}w_n^{-ij}*(A[i]-B[i]*\sqrt{-1})\)
\(=DFT(Q)[n-i]\)
这样求出了\(DFT(P),DFT(Q)\)
那么\(DFT(A)=(DFT(P)+DFT(Q))*({1\over2},0),\\DFT(B)=(DFT(P)-DFT(Q))*(-1)*(0, {1\over2})\)
这个东西显然有一个条件是\(A、B\)只能实部有值,不然会混乱了无法提出来的。
IDFT:
接下来是IDFT,同样的可以两个 一起做。
如果有\(A、B\),都只有实部有值,设\(C=DFT(A)+i*DFT(B)\)
显然\(IDFT(C)\)的实部就是A,虚部就是B
这样我们就用四次DFT完成啦!
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
#define db double
using namespace std;
const db pi = acos(-1);
const int mo = 1e9 + 7;
struct P {
db x, y;
P(db _x = 0, db _y = 0) { x = _x, y = _y;}
P operator + (P b) { return P(x + b.x, y + b.y);}
P operator - (P b){ return P(x - b.x, y - b.y);}
P operator * (P b) { return P(x * b.x - y * b.y, x * b.y + y * b.x);}
};
const int nm = 1 << 18;
P w[nm]; int r[nm];
P c0[nm], c1[nm], c2[nm], c3[nm];
void dft(P *a, int n) {
ff(i, 0, n) {
r[i] = r[i / 2] / 2 + (i & 1) * (n / 2);
if(i < r[i]) swap(a[i], a[r[i]]);
} P b;
for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i)
ff(k, 0, i) b = a[i + j + k] * w[i + k], a[i + j + k] = a[j + k] - b, a[j + k] = a[j + k] + b;
}
void rev(P *a, int n) {
reverse(a + 1, a + n);
ff(i, 0, n) a[i].x /= n, a[i].y /= n;
}
P conj(P a) { return P(a.x, -a.y);}
void fft(ll *a, ll *b, int n) {
#define qz(x) ((ll) round(x))
// ff(i, 0, n) c0[i] = P(a[i], 0), c1[i] = P(b[i], 0);
// dft(c0, n); dft(c1, n);
// ff(i, 0, n) c0[i] = c0[i] * c1[i];
// dft(c0, n); rev(c0, n);
// ff(i, 0, n) a[i] = qz(c0[i].x);
ff(i, 0, n) c0[i] = P(a[i] & 32767, a[i] >> 15), c1[i] = P(b[i] & 32767, b[i] >> 15);
dft(c0, n); dft(c1, n);
ff(i, 0, n) {
P k, d0, d1, d2, d3;
int j = (n - i) & (n - 1);
k = conj(c0[j]);
d0 = (k + c0[i]) * P(0.5, 0);
d1 = (k - c0[i]) * P(0, 0.5);
k = conj(c1[j]);
d2 = (k + c1[i]) * P(0.5, 0);
d3 = (k - c1[i]) * P(0, 0.5);
c2[i] = d0 * d2 + d1 * d3 * P(0, 1);
c3[i] = d0 * d3 + d1 * d2;
}
dft(c2, n); dft(c3, n); rev(c2, n); rev(c3, n);
ff(i, 0, n) {
a[i] = qz(c2[i].x) + (qz(c2[i].y) % mo << 30) + (qz(c3[i].x) % mo << 15);
a[i] %= mo;
}
}
ll a[nm], b[nm];
int main() {
for(int i = 1; i < nm; i *= 2) ff(j, 0, i)
w[i + j] = P(cos(pi * j / i), sin(pi * j / i));
fo(i, 0, 15) a[i] = b[i] = mo - 1;
fft(a, b, 32);
ff(i, 0, 32) pp("%lld ", a[i]);
}
MTT学习小记的更多相关文章
- mongodb入门学习小记
Mongodb 简单入门(个人学习小记) 1.安装并注册成服务:(示例) E:\DevTools\mongodb3.2.6\bin>mongod.exe --bind_ip 127.0.0.1 ...
- javascript学习小记(一)
大四了,课少了许多,突然之间就不知道学什么啦.整天在宿舍混着日子,很想学习就是感觉没有一点头绪,昨天看了电影激战.这种纠结的情绪让我都有点喘不上气啦!一点要找点事情干了,所以决定找个东西开始学习.那就 ...
- js 正则学习小记之匹配字符串
原文:js 正则学习小记之匹配字符串 今天看了第5章几个例子,有点收获,记录下来当作回顾也当作分享. 关于匹配字符串问题,有很多种类型,今天讨论 js 代码里的字符串匹配.(因为我想学完之后写个语法高 ...
- js 正则学习小记之左最长规则
原文:js 正则学习小记之左最长规则 昨天我在判断正则引擎用到的方法是用 /nfa|nfa not/ 去匹配 "nfa not",得到的结果是 'nfa'.其实我们的本意是想得到整 ...
- js 正则学习小记之NFA引擎
原文:js 正则学习小记之NFA引擎 之前一直认为自己正则还不错,在看 次碳酸钴,Barret Lee 等大神都把正则玩的出神入化后发现我只是个战五渣. 求抱大腿,求大神调教. 之前大致有个印象,正 ...
- js 正则学习小记之匹配字符串优化篇
原文:js 正则学习小记之匹配字符串优化篇 昨天在<js 正则学习小记之匹配字符串>谈到 个字符,除了第一个 个,只有 个转义( 个字符),所以 次,只有 次成功.这 次匹配失败,需要回溯 ...
- CSS学习小记
搜狗主页页面CSS学习小记 1.边框的处理 要形成上图所示的布局效果,即,点选后,导航下面的边框不显示而其他的边框形成平滑的形状.相对于把导航的下面边框取消然后用空白覆盖掉下面搜索栏的边框比较而言 ...
- Gcd&Exgcd算法学习小记
Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...
- logstash 学习小记
logstash 学习小记 标签(空格分隔): 日志收集 Introduce Logstash is a tool for managing events and logs. You can use ...
随机推荐
- Linux 操作系统介绍
应用软件——操作系统——硬件 操作系统的作用 是现代计算机系统中最基本和最重要的系统软件 是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩展 主要作用是管理好硬件设备,并为用户和应用程序提供一个 ...
- 【TJOI2018】教科书般的亵渎
题面 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成11点伤 ...
- linux php5.6 安装
如果之前有安装其他版本PHP,请先卸载干净 配置yum源 追加CentOS 6.5的epel及remi源. # rpm -Uvh http://ftp.iij.ad.jp/pub/linux/fe ...
- mysql 中字符串拼接,查询sql语句总结
DELIMITER $$ USE `ld_wpfmgl_sys`$$ DROP PROCEDURE IF EXISTS `code_query`$$ CREATE DEFINER=`root`@`%` ...
- Packet for query is too large (1986748 > 1048576). You can change this value on the server by 异常
场景:mybatis动态拼接,批量添加数据,因为数据太多,凭借过多,导致MySql数据库中插入大于1m的数据时,提示该异常. 解决办法:修改mysql的属性 max_allowed_packet即可. ...
- Spring boot自定义拦截器和拦截器重定向配置简单介绍
大家好: 本文简单介绍一下用于权限控制的Spring boot拦截器配置,拦截器重定向问题. 开发工具:jdk1.8 idea2017(付费版,网上找的破解教程) 1,首先使用idea创建一个Sp ...
- Robot Framework:数据库操作
robotframework 操作数据库,需要安装DatabaseLibrary库 pip install robotframework-databaselibrary Python操作不同的数据库, ...
- flink详细介绍
Flink是什么 Flink是一个分布式计算引擎 MapReduce Spark Storm 同时支持流计算和批处理 和Spark不同, Flink是使用流的思想做批, Spark是采用做批的思想做流 ...
- ASP.NET Core学习——3
中间件 中间件是用于组成应用程序管道来处理请求和相应的组件.管道内的每一个组件都可以选择是否将请求交给下一个组件,并在管道中调用下一个组件之前和之后执行某些操作.请求委托被用来建立请求管道,请求委托处 ...
- 动态队列实现-----C语言
/***************************************************** Author:Simon_Kly Version:0.1 Date: 20170520 D ...