[HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)
prufer序列
- 定义
Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。
- 描述
eg

- 将树转化成Prufer数列的方法
一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。
对于例子有:
首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}
- 将Prufer数列转化成树的方法
设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。
对于例子有:
Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复。
(参考自度娘)
- 性质
- prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1
- 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
- n个点的无向完全图的生成树的计数:n^(n−2),即n个点的有标号无根树的计数
- n个节点的度依次为d1,d2,…,dn的无根树共有(n−2)!/∏n i=1(di−1)!个,因为此时Prufer编码中的数字i恰好出现di−1次,(n−2)!是总排列数
- n个点的 有标号有根树的计数:n^(n−2) ∗n=n^(n−1)
[HNOI2008]明明的烦恼(luogu)
- Description
题目描述
自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
输入格式
第一行为N(0<N<=1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
输出格式
一个整数,表示不同的满足要求的树的个数,无解输出0
- Solution
数学推导(不会打式子)+质因数分解+高精乘法计算最后结果
- Code
#include <cstdio>
#include <cstdlib>
#define ll long long
using namespace std;
const int N=,base=;
ll a[N];
int n,k,d[N],sum,ans[N];
void add(int x,ll c)
{
for(int i=;i<=x;i++)
while(x%i==) x/=i,a[i]+=c;
}
void re()
{
puts("");
exit();
}
void print()
{
printf("%d",ans[ans[]]);
for(int i=ans[]-;i>;i--)
printf("%04d",ans[i]);
printf("\n");
}
void mul(ll x)
{
for(int i=;i<=ans[];i++) ans[i]*=x;
for(int i=;i<=ans[];i++)
ans[i+]+=ans[i]/base,ans[i]%=base;
while(ans[ans[]+])
ans[]++,ans[ans[]+]+=ans[ans[]]/base,ans[ans[]]%=base;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]==) re();
if(d[i]!=-) k++,sum+=d[i]-;
}
if(sum>n-) re();
for(int i=n-;i>n--sum;i--) add(i,);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++)
add(j,-);
add(n-k,n--sum);
ans[]=ans[]=;
for(int i=;i<=n;i++)
for(int j=;j<=a[i];j++) mul(i);
print();
return ;
}

[HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)的更多相关文章
- 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...
- BZOJ 1005 明明的烦恼(prufer序列+高精度)
有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合
1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...
- BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度
题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...
随机推荐
- BZOJ 3166
BZOJ3196: Tyvj 1730 二逼平衡树 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题意: 1.查询k在区间内的排名 ...
- 小心Powershell的位数
我们都知道64位的 Windows 中有两个Powershell,32位的 Windows Powershell(x86)和64位的 Windows Powershell.(当然,32位的Window ...
- 将 using namespace 写在函数体中,以避免命名空间冲突
将 using namespace xxx 写在函数体中时, 命名空间 xxx 中定义的资源只在该函数体中有效. 测试代码如下图所示(namespace std 只在函数 testFun2 中有效):
- Python3 安装pylint 及与PyCharm关联
使用如下命令: pip3 install pylint 安装完后可以看到在你的python3的目录底下的Scripts目录下有pylint.exe了 然后就可以使用pylint 评估你的代码了,如: ...
- Android CTS中neverallow规则生成过程
CTS里面SELinux相关测试中neverallow测试项占绝大多数,Android系统开发者都应该知道,在修改sepolicy时,需要确保不能违反这些neverallow规则,不然会过不了CTS. ...
- 使用rapidjson把文本json数据解析到树状结构
一个递归搞定 无聊的时候练练手就写了一个 头文件什么的我就不贴了 demo程序是MFC写的 void ParseObject(rapidjson::Value dc, CTreeCtrl * pTre ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- C++单例模式的简单实现
c++单例模式的实现(一) 实现方法 1.将构造函数,析构函数私有化,这样保证在类外无法调用类的构造函数创建类的实例,只能通过类内部定义的方法进行创建: 2.在类内定义静态的,指向该类的指针变量ptr ...
- .NetCoreApi容器与MySql容器互联
构建Mysql容器 1.拉取mysql镜像 docker pull mysql/mysql-server 2.创建mysql镜像 docker run -d -p 3306:3306 -e MYSQL ...
- Q&A系列一:DataPipeline常见问题回答
不知不觉中,大家已经陪伴DataPipeline走过了3年时间.在这期间,得益于客户们的积极反馈和沟通,我们总结了一些日常工作中比较常见的问题,并基于这些问题进行了总结. 为避免突兀,我们会先从比较基 ...