prufer序列

  • 定义

Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。

  • 描述

eg

  1. 将树转化成Prufer数列的方法

  一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。

对于例子有:

  首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}

  1. 将Prufer数列转化成树的方法

  设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。

对于例子有:

  Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复。

(参考自度娘)

  • 性质
  1. prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1
  2. 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
  3. n个点的无向完全图的生成树的计数:n^(n−2),即n个点的有标号无根树的计数
  4. n个节点的度依次为d1,d2,…,dn的无根树共有(n−2)!/∏n i=1(di−1)!个,因为此时Prufer编码中的数字i恰好出现di−1次,(n−2)!是总排列数
  5. n个点的 有标号有根树的计数:n^(n−2) ∗n=n^(n−1)

[HNOI2008]明明的烦恼(luogu)

  • Description

题目描述

自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

输入格式

第一行为N(0<N<=1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

输出格式

一个整数,表示不同的满足要求的树的个数,无解输出0

  • Solution

数学推导(不会打式子)+质因数分解+高精乘法计算最后结果

  • Code
#include <cstdio>
#include <cstdlib>
#define ll long long
using namespace std;
const int N=,base=;
ll a[N];
int n,k,d[N],sum,ans[N];
void add(int x,ll c)
{
for(int i=;i<=x;i++)
while(x%i==) x/=i,a[i]+=c;
}
void re()
{
puts("");
exit();
}
void print()
{
printf("%d",ans[ans[]]);
for(int i=ans[]-;i>;i--)
printf("%04d",ans[i]);
printf("\n");
}
void mul(ll x)
{
for(int i=;i<=ans[];i++) ans[i]*=x;
for(int i=;i<=ans[];i++)
ans[i+]+=ans[i]/base,ans[i]%=base;
while(ans[ans[]+])
ans[]++,ans[ans[]+]+=ans[ans[]]/base,ans[ans[]]%=base;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]==) re();
if(d[i]!=-) k++,sum+=d[i]-;
}
if(sum>n-) re();
for(int i=n-;i>n--sum;i--) add(i,);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++)
add(j,-);
add(n-k,n--sum);
ans[]=ans[]=;
for(int i=;i<=n;i++)
for(int j=;j<=a[i];j++) mul(i);
print();
return ;
}

[HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)的更多相关文章

  1. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  2. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  5. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  10. BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

    题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...

随机推荐

  1. Java实现简单的学生成绩管理系统

    ScoreInformation.java import java.util.Scanner; class ScoreInformation {    private String stunumber ...

  2. C语言中的优先级和类型转换分析

    一.优先级 1.易错的优先级 二.类型转换 在C语言中,存在强制类型装换,也存在隐式类型转换,隐式类型转换实际上属于强制类型转换,隐式类型转换要点如图. (1)举例:算术运算式中,低类型转换为高类型 ...

  3. AbstactFactory模式

    AbstractFactory模式就是用来解决这类问题的:要创建一组相关或者相互依赖的对象. AbstractFactory模式关键就是将这一组对象的创建封装到一个用于创建对象的类(ConcreteF ...

  4. sql查询分类和所有子类

    select * from [JianDu].[dbo].[ZuZhiJiGou] where id = 64 --查询节点 union allSELECT TOP 1000 a.* FROM [Ji ...

  5. Nmap基本使用

    Nmap ​ Network Mapper ​ 一款开源免费的网络发现和安全审计工具. 用途 ​ 列举网络主机清单 ​ 监控主机或服务运行状况 ​ 管理服务升级调度 ​ 检测目标主机是否在线 ​ 检测 ...

  6. Adam Harley的卷积神经网络3D视觉化模型

    https://m.huxiu.com/article/138857/1.html 最近 Google Tensorflow 做了一个非常直观的神经网络 playground.不夸张地说,现在每个人都 ...

  7. div3的e题有点水呀

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  8. 五子棋C++版

    当前只完成了单机人人对战  后续会完成联机和AI的实现 定义棋盘 typedef struct { int kind; }Map; //棋盘 0为无子 1为黑子 2为白子 Map maps[line_ ...

  9. 大白话讲解Spring的@bean注解

    1.Spring注解分类 从广义上Spring注解可以分为两类: 一类注解是用于注册Bean 假如IOC容器就是一间空屋子,首先这间空屋子啥都没有,我们要吃大餐,我们就要从外部搬运食材和餐具进来.这里 ...

  10. IDEA模板快捷键

    2.1 psvm:可生成 main 方法 2.2 sout:System.out.println() 快捷输出 类似的: soutp=System.out.println("方法形参名 = ...