prufer序列

  • 定义

Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。

  • 描述

eg

  1. 将树转化成Prufer数列的方法

  一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。

对于例子有:

  首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}

  1. 将Prufer数列转化成树的方法

  设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。

对于例子有:

  Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复。

(参考自度娘)

  • 性质
  1. prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1
  2. 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
  3. n个点的无向完全图的生成树的计数:n^(n−2),即n个点的有标号无根树的计数
  4. n个节点的度依次为d1,d2,…,dn的无根树共有(n−2)!/∏n i=1(di−1)!个,因为此时Prufer编码中的数字i恰好出现di−1次,(n−2)!是总排列数
  5. n个点的 有标号有根树的计数:n^(n−2) ∗n=n^(n−1)

[HNOI2008]明明的烦恼(luogu)

  • Description

题目描述

自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

输入格式

第一行为N(0<N<=1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

输出格式

一个整数,表示不同的满足要求的树的个数,无解输出0

  • Solution

数学推导(不会打式子)+质因数分解+高精乘法计算最后结果

  • Code
#include <cstdio>
#include <cstdlib>
#define ll long long
using namespace std;
const int N=,base=;
ll a[N];
int n,k,d[N],sum,ans[N];
void add(int x,ll c)
{
for(int i=;i<=x;i++)
while(x%i==) x/=i,a[i]+=c;
}
void re()
{
puts("");
exit();
}
void print()
{
printf("%d",ans[ans[]]);
for(int i=ans[]-;i>;i--)
printf("%04d",ans[i]);
printf("\n");
}
void mul(ll x)
{
for(int i=;i<=ans[];i++) ans[i]*=x;
for(int i=;i<=ans[];i++)
ans[i+]+=ans[i]/base,ans[i]%=base;
while(ans[ans[]+])
ans[]++,ans[ans[]+]+=ans[ans[]]/base,ans[ans[]]%=base;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]==) re();
if(d[i]!=-) k++,sum+=d[i]-;
}
if(sum>n-) re();
for(int i=n-;i>n--sum;i--) add(i,);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++)
add(j,-);
add(n-k,n--sum);
ans[]=ans[]=;
for(int i=;i<=n;i++)
for(int j=;j<=a[i];j++) mul(i);
print();
return ;
}

[HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)的更多相关文章

  1. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  2. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  5. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  10. BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

    题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...

随机推荐

  1. 阿里云“网红&quot;运维工程师白金:做一个平凡的圆梦人

    他是阿里云的一位 P8 运维专家,却很有野心得给自己取花名“辟拾(P10)”:他没有华丽的履历,仅凭着 26 年的热爱与坚持,一步一个脚印踏出了属于自己的技术逆袭之路:他爱好清奇,练就了能在 20 秒 ...

  2. 17.python内置函数2

    python内置函数1:https://www.cnblogs.com/raitorei/p/11813694.html # max,min高级玩法 # l=[1,3,100,-1,2] # prin ...

  3. mac 访达修改所有文件夹默认排序方式

    先说个误区,下图只能改变当前目录的排序方式 修改所有目录的排序方式需要在顶部的“显示” 中修改

  4. Django 中配置MySQL数据库

    在Django的项目中会默认使用sqlite的数据库 配置MySQL需要在setting.py 里加入以下设置: 配置数据库 DATABASES = { 'default': { 'ENGINE': ...

  5. C# 中的IComparable和IComparer

    前言 在开发过程中经常会遇到比较排序的问题,比如说对集合数组的排序等情况,基本类型都提供了默认的比较算法,如string提供了按字母进行排序,而int整数则是根据整数大小进行排序.但是在引用类型中(具 ...

  6. 004使用u-boot烧写裸版程序

  7. jenkins+ant+jmeter自动化环境搭建

    jmeter:测试接口的工具,支持java语言: ant:Apache Ant是一个Java库和命令行工具,其任务是将构建文件中描述的进程作为相互依赖的目标和扩展点.只要使用过Linux系统的读者,应 ...

  8. java 实现敏感词(sensitive word)工具详解使用说明

    sensitive-word 平时工作中,只要涉及到用户可以自由发言(博客.文档.论坛),就要考虑内容的敏感性处理. sensitive-word 基于 DFA 算法实现的高性能敏感词工具.工具使用 ...

  9. C# Post发送 接受Xml

    //组合xml内容 StringBuilder strBuilder = new StringBuilder(); var par= @"<xml> <appid>w ...

  10. [转载] Windows系统批处理延迟方法

    小贴士:方法四 亲测有效,因为当时对于精确度要求不是很高,所以没有具体测试它的精确度.其他方法没有测过,用到的时候再测吧! 批处理延时启动的几个方法 方法一:ping 缺点:时间精度为1秒,不够精确 ...