求LCM(a,b)=n的(a,b)的总对数(a<=b)
\(a={p_1} ^ {a_1} *{p_1} ^ {a_1} *..........*{p_n} ^ {a_n}\)
\(b={p_1} ^ {b_1} *{p_1} ^ {b_1} *..........*{p_n} ^ {b_n}\)
\(lcm(a,b)={p_1} ^ {max(a_1,b_1)} *{p_2} ^ {max(a_2,b_2)} *..........*{p_n} ^ {max(a_n,b_n)}=n\)
假定\(a<=b\)
所以对n进行质因数分解,计算出每个质因数的指数部分,比如其中一部分\({p_n}^k\)则说明\(max(a_n,b_n)=k\),那么如果\(a_n=k\),那么\(b_n\)有\(k+1\)种取值方法,同理如果\(b_n=k\),那么\(a_n\)有\(k+1\)种取值方法,那么对于这个质因数我们有\(2*(k+1)-1\)种取值方法,一开始\(ans=1\),对于每个质因数乘以其贡献,那么除了\(a=b=n\)的情况,其他都计算了两次,由于最后我们要的是\((a<=b)\)的方案数,那么\(ans=ans/2+1\)即可
求LCM(a,b)=n的(a,b)的总对数(a<=b)的更多相关文章
- ATcoder E - Flatten 质因子分解求LCM
题解:其实就是求n个数的lcm,由于数据特别大,求lcm时只能用质因子分解的方法来求. 质因子分解求lcm.对n个数每个数都进行质因子分解,然后用一个数组记录某个质因子出现的最大次数.然后累乘pow( ...
- LightOj 1215 - Finding LCM(求LCM(x, y)=L中的 y )
题目链接:http://lightoj.com/volume_showproblem.php?problem=1215 题意:已知三个数a b c 的最小公倍数是 L ,现在告诉你 a b L 求最 ...
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- 莫比乌斯反演求LCM的另一种做法
一个经典问题 求 \[ \sum_{k=1}^n\mathbb{lcm}(k,n) \] 一般的做法是使用\(\varphi(n)\)函数. 不经典的做法 \[ \begin{align*} \sum ...
- 算法练习之DP 求LCM (最长公共子序列)
1. 对于序列x[1,i]和y[1,j],推导递推公式1.a 假设当前元素同样,那么就将当前最大同样数+12.b 假设当前元素不同.那么就把当前最大同样数"传递"下去 因此递推公式 ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- LightOj 1289 - LCM from 1 to n(LCM + 素数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1289 题意:求LCM(1, 2, 3, ... , n)%(1<<32), ...
随机推荐
- Keras mlp 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from ...
- HFile v2 v3文件结构
http://blog.csdn.net/map_lixiupeng/article/details/40861791 http://blog.csdn.net/map_lixiupeng/artic ...
- python函数不定长参数
def fun(a, b, *args): print(a) print(b) print(args) print("="*30) ret = a + b for i in arg ...
- JavaScript数组的方法 | 学习笔记分享
数组 数组的四个常用方法 push() 该方法可以向数组的末尾添加一个或多个元素,并返回数组的新长度 可以将要添加的元素作为方法的参数传递,这些元素将会自动添加到数组的末尾 pop() 该方法可以删除 ...
- iOS @property、@synthesize和@dynamic
@property @property的本质: @property = ivar(实例变量) + getter/setter(存取方法); 在正规的 Objective-C 编码风格中,存取方法有着严 ...
- react-native-swiper使用的坑
今天使用引入react-native-swiper组件使用轮播图时,发现报如下错误: Invarint Violation:ViewPagerAndroid has been removed from ...
- 007 Ceph手动部署单节点
前面已经介绍了Ceph的自动部署,本次介绍一下关于手动部署Ceph节点操作 一.环境准备 一台虚拟机部署单节点Ceph集群 IP:172.25.250.14 内核: Red Hat Enterpris ...
- centos curl命令post携带body json数据
1,接口链接 https://xxx.com/xqAppServer/api/APPBizRest/idfaDuplicateRemove/v1/?sysIdfa=661743D1-A76E-498A ...
- SVN+Apache+IF.svnadmin支持https实现web管理SVN
一,软件准备 .安装apache [root@localhost ~]# yum install httpd -y .安装svn服务器(其中,mod_dav_svn是apache服务器访问svn的一个 ...
- 计算机组成原理(下)第8章 CPU的结构和功能测试
1.单选(1分) 以下关于指令周期的描述正确的是___ A.CPU保存一条指令的时间 B.CPU执行一条指令的时间 C.CPU取出并执行一条指令所需的全部时间 D.CPU从主存取出一条指令的时间 正确 ...