D - People on a Line

Problem Statement

There are N people standing on the x-axis. Let the coordinate of Person i be xi. For every i, xi is an integer between 0 and 109 (inclusive). It is possible that more than one person is standing at the same coordinate.

You will given M pieces of information regarding the positions of these people. The i-th piece of information has the form (Li,Ri,Di). This means that Person Ri is to the right of Person Li by Di units of distance, that is, xRixLi=Di holds.

It turns out that some of these M pieces of information may be incorrect. Determine if there exists a set of values (x1,x2,…,xN) that is consistent with the given pieces of information.

Constraints

  • 1≤N≤100 000
  • 0≤M≤200 000
  • 1≤Li,RiN (1≤iM)
  • 0≤Di≤10 000 (1≤iM)
  • LiRi (1≤iM)
  • If ij, then (Li,Ri)≠(Lj,Rj) and (Li,Ri)≠(Rj,Lj).
  • Di are integers.

Input

Input is given from Standard Input in the following format:

N M
L1 R1 D1
L2 R2 D2
:
LM RM DM

Output

If there exists a set of values (x1,x2,…,xN) that is consistent with all given pieces of information, print Yes; if it does not exist, print No.


Sample Input 1

Copy
3 3
1 2 1
2 3 1
1 3 2

Sample Output 1

Copy
Yes

Some possible sets of values (x1,x2,x3) are (0,1,2) and (101,102,103).


Sample Input 2

Copy
3 3
1 2 1
2 3 1
1 3 5

Sample Output 2

Copy
No

If the first two pieces of information are correct, x3x1=2 holds, which is contradictory to the last piece of information.


Sample Input 3

Copy
4 3
2 1 1
2 3 5
3 4 2

Sample Output 3

Copy
Yes

Sample Input 4

Copy
10 3
8 7 100
7 9 100
9 8 100

Sample Output 4

Copy
No

Sample Input 5

Copy
100 0

Sample Output 5

Copy
Yes

题意:给定有N个人,M条信息。每条信息:L,R,D,表示第R个人在第L个人的右边距离为D。求根据这M条信息判断安排是否成立。
题解:本来以为可以在线一条一条输入输入信息的同时判断是否合法,好像是不可以。答案说是构成图,然后DFS每一个节点。
 #include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cstdio>
using namespace std;
const int maxn = 1e5 + ;
typedef long long ll;
vector<pair<int, int> > e[maxn];
ll dis[maxn];
bool vis[maxn];
int n, m,flag=; void dfs(int x)
{
vis[x] = ;
for (int i = ; i < e[x].size(); i++)
{
pair<int, int> cur=e[x][i];
if (vis[cur.first]) {
if (dis[cur.first] - dis[x] != cur.second) {
flag = ; break;
}
}
else {
dis[cur.first] = dis[x] + cur.second;
dfs(cur.first);
}
}
} int main()
{
cin >> n >> m;
memset(vis, , sizeof(vis));
for (int i = ; i < m; i++) {
int l, r, d;
cin >> l >> r >> d;
e[l].push_back({ r,d });
e[r].push_back({ l,-d });
}
flag = ;
for (int i = ; i <n; i++) {
if (!vis[i])
dfs(i);
if (flag) {
break;
}
}
if (flag) {
cout << "No" << endl;
}
else
cout << "Yes" << endl;
return ;
}

AtCoder Regular Contest 090 D - People on a Line的更多相关文章

  1. AtCoder Regular Contest 090

    C - Candies 链接:https://arc090.contest.atcoder.jp/tasks/arc090_a 题意:从左上角走到右下角,只能向右和向下走,问能最多能拿多少糖果. 思路 ...

  2. AtCoder Regular Contest 090 F - Number of Digits

    题目链接 Description For a positive integer \(n\), let us define \(f(n)\) as the number of digits in bas ...

  3. AtCoder Regular Contest 090 C D E F

    C - Candies 题意 求左上角走到右下角最大的数字和. 思路 直接\(dp\) Code #include <bits/stdc++.h> #define maxn 110 usi ...

  4. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  5. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  6. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  7. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  8. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  9. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

随机推荐

  1. jsp中 url传参到后台的参数获取

    datagrid传值url方法1:<input type="hidden" id="sortid"> <table id="dg&q ...

  2. leetcode 843. Guess the Word

    我做过的第一个 interactive problem 给一个候选词列表,每次猜测可以猜里面的词,会返回猜中匹配的个数, 可以猜10次, 加上随机化策略之后几乎可以一定通过测试(尽管不是100%) c ...

  3. 《数据结构与算法分析——C语言描述》ADT实现(NO.03) : 二叉搜索树/二叉查找树(Binary Search Tree)

    二叉搜索树(Binary Search Tree),又名二叉查找树.二叉排序树,是一种简单的二叉树.它的特点是每一个结点的左(右)子树各结点的元素一定小于(大于)该结点的元素.将该树用于查找时,由于二 ...

  4. sudo 授权许可使用的su,也是受限制的su

    sudo 的适用条件: 由于su 对切换到超级权限用户root后,权限的无限制性,所以su并不能担任多个管理员所管理的系统.如果用su 来切换到超级用户来管理系统,也不能明确哪些工作是由哪个管理员进行 ...

  5. 2016年省赛 G Triple Nim

    2016年省赛 G Triple Nimnim游戏,要求开始局面为先手必败,也就是异或和为0.如果n为奇数,二进制下最后一位只有两种可能1,1,1和1,0,0,显然异或和为1,所以方案数为0如果n为偶 ...

  6. golang中函数类型

    今天看Martini文档,其功能列表提到完全兼容http.HandlerFunc接口,就去查阅了Go: net/http的文档,看到type HandlerFunc这部分,顿时蒙圈了.由于之前学习的时 ...

  7. wamp 添加pear

    1.下载pear http://pear.php.net/go-pear.phar 2.安装 在目录 D:\wamp\bin\php\php5.5.12 新建文件夹pear,将文件go-pear.ph ...

  8. Hackerrank--Mixing proteins(Math)

    题目链接 Some scientists are working on protein recombination, and during their research, they have foun ...

  9. 在C#应用中使用Common Logging日志接口

    我在C#应用中一般使用log4net来记录日志,但如果项目中有个多个工程,那么没有工程都需要引用log4neg,感觉很不爽.不过今日在开spring.net的时候,看到了有个通用日志接口Common ...

  10. Git--版本管理的使用及理解

    如果多人合作时,git也是需要中间交换服务器来解决冲突合并,这不还是集中式版本控制吗? 而svn不是也可以将所有源码下载到本机,然后在本机修改,保存在本机上,为什么这个不能说是分布式,提交的时候不也是 ...