Machine Learning Books Suggested by Michael I. Jordan from Berkeley
http://www.statsblogs.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/
Machine Learning Books Suggested by Michael I. Jordan from Berkeley
(This article was originally published at Honglang Wang's Blog, and syndicated at StatsBlogs.)
There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.
- Frequentist Statistics
- Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
- Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
- Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
- Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
- Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
- B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
- Bayesian Statistics
- Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
- Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
- Probability Theory
- Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
- Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
- Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
- Optimization
- Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
- Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
- Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
- Linear Algebra
- Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
- Information Theory
- Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
- Functional Analysis
- Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.
Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”
Machine Learning Books Suggested by Michael I. Jordan from Berkeley的更多相关文章
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- What skills are needed for machine learning jobs
What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...
- Machine Learning Library (MLlib) Guide, BOOKS
download.microsoft.com/download/0/9/6/096170E9-23A2.../9780735698178.pdf Microsoft Azure Essential ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- booklist for machine learning
Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- JS修改当前控件样式&为控件追加事件
先搁这吧,今天太晚了,以后再加注释和修整吧.不幸搜到的朋友就别看了 <%@ Page Language="vb" AutoEventWireup="false&qu ...
- 使用maven创建web项目【转】
1.首先新建一个maven项目,看图: 2.按照以上步骤就可以创建一个maven项目,可以看到最下图的目录结构,但是这样的目录结构是不对的,需要做一些修改. 首先为了避免乱码,我们应该将项目编码换成U ...
- maven正确的集成命令-U-B
http://healthandbeauty.iteye.com/blog/1618501 在持续集成服务器上使用怎样的 mvn 命令集成项目,这个问题乍一看答案很显然,不就是 mvn clean i ...
- spark rdd Transformation和Action 剖析
1.看到 这篇总结的这么好, 就悄悄的转过来,供学习 wordcount.toDebugString查看RDD的继承链条 所以广义的讲,对任何函数进行某一项操作都可以认为是一个算子,甚至包括求幂次,开 ...
- 转:OGRE 渲染通路(Pass)
一个渲染通路就是几何问题里的一次渲染:一个带有一整套渲染属性的渲染API的一次调用.一个技术可以包含有1到16个渲染通路,当然,渲染通路用得越多,技术在渲染的时候开销越大. 为了清楚识别使用的到底是哪 ...
- 数学之路-python计算实战(9)-机器视觉-图像插值仿射
插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...
- Android网络开发之蓝牙
蓝牙采用分散式网络结构以及快调频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(I-工业.S-科学.M-医学)频段,其数据速率为1Mbps,采用时分双工传输方案. 蓝牙 ...
- web-app_2_5.xsd内容
<?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns="http://w ...
- los中预览文件
#import <UIKit/UIKit.h> #import <QuickLook/QuickLook.h> @interface ViewController : UIVi ...
- <转>字节码指令
本文转自:http://www.cnblogs.com/nazhizq/p/6525263.html 在llimits.h文件中定义了指令的类型.其实就是32个字节. typedef lu_int32 ...