http://www.statsblogs.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/

Machine Learning Books Suggested by Michael I. Jordan from Berkeley

December 30, 2014

By Honglang Wang

(This article was originally published at Honglang Wang's Blog, and syndicated at StatsBlogs.)

There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.

  • Frequentist Statistics
    1. Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
    2. Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
    3. Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
    4. Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
    5. Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
    6. B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
  • Bayesian Statistics
    1. Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
    2. Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
  • Probability Theory
    1. Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
    2. Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
    3. Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
  • Optimization
    1. Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
    2. Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
    3. Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
  • Linear Algebra
    1. Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
  • Information Theory
    1. Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
  • Functional Analysis
    1. Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.

Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”

Machine Learning Books Suggested by Michael I. Jordan from Berkeley的更多相关文章

  1. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  2. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  3. What skills are needed for machine learning jobs

    What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...

  4. Machine Learning Library (MLlib) Guide, BOOKS

    download.microsoft.com/download/0/9/6/096170E9-23A2.../9780735698178.pdf   Microsoft Azure Essential ...

  5. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  6. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  7. booklist for machine learning

    Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. code vs 1013 求先序排列

    2001年NOIP全国联赛普及组 题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Input De ...

  2. mysql workbench图形化mysql管理工具

    MYSQL官网也推出了针对Linux的图形化的连接工具-MySQL Workbench.MySQL Workbench不仅仅是一个简单的MySQL客户端.简而言之,Workbench是一个跨平台的 ( ...

  3. web-app_2_5.xsd内容

    <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns="http://w ...

  4. Ubuntu远程桌面,如何退出全屏

    首先安装Linux 下远程桌面客户端软件-rdesktop 打开终端 执行sudo apt-get install rdesktop 远程连接XP 系统(前提是windows xp 必须打开并且允许远 ...

  5. zabbix3.0 安装时出现PHP Parse error: syntax error

    httpd的错误日志 [Sun Mar :: ] [error] [client 由于系统yum默认安装的php版本是5.3.3 zabbix 3.0支持的平台,只支持php5.4以上的版本https ...

  6. ML之监督学习算法之分类算法一 ——— 决策树算法

    一.概述 决策树(decision tree)的一个重要任务是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,在这些机器根据数据创建规则时,就是机器学习的过程. ...

  7. php,perl计算crc

    PHP版: <?php echo getCrc32("/var/www/html/resource/koc_data/2013_03/01/1ck65e.koc") ; # ...

  8. golang学习笔记 ---数组与切片

    数组: golang数组包含的每个数据称为数组元素(element),数组包含的元素个数被称为数组长度(length). golang数组的长度在定义后不可更改,并且在声明时可以是一个常量或常量表达式 ...

  9. SQL Server 索引重建脚本

    在数据的使用过程中,由于索引page碎片过多,带来一些不利的性能问题,我们有时候需要对数据库中的索引进行重组或者重建工作.通常这个阈值为30%,大于30%我们建议进行索引重建,小于则进行重组操作.以下 ...

  10. 《自己动手写框架2》:用200行的DBF解析器来展示良好架构设计

    因为工作关系.须要工作其中,须要读取DBF文件.找了一些DBF读取开源软件,要么是太过庞大,动不动就上万行.要么是功能有问题,编码,长度,总之是没有找到一个很爽的. 在万般无奈之下,我老人家怒从心头起 ...