Machine Learning Books Suggested by Michael I. Jordan from Berkeley
http://www.statsblogs.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/
Machine Learning Books Suggested by Michael I. Jordan from Berkeley
(This article was originally published at Honglang Wang's Blog, and syndicated at StatsBlogs.)
There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.
- Frequentist Statistics
- Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
- Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
- Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
- Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
- Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
- B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
- Bayesian Statistics
- Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
- Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
- Probability Theory
- Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
- Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
- Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
- Optimization
- Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
- Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
- Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
- Linear Algebra
- Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
- Information Theory
- Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
- Functional Analysis
- Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.
Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”
Machine Learning Books Suggested by Michael I. Jordan from Berkeley的更多相关文章
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- What skills are needed for machine learning jobs
What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...
- Machine Learning Library (MLlib) Guide, BOOKS
download.microsoft.com/download/0/9/6/096170E9-23A2.../9780735698178.pdf Microsoft Azure Essential ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- booklist for machine learning
Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- 代理服务 SQUID 测试
第一部分:SQUID基础 Squid代理服务的基本配置: http_port 3128 #设置监听的IP与端口号 cache_mem 64 MB ...
- docker-compose 管理多个docker容器实例
Compose 安装 运行此命令下载最新版本的Docker Compose $ curl -L https://github.com/docker/compose/releases/download/ ...
- ios实例开发精品文章推荐(8.13)
提示用户对产品进行评价 http://www.apkbus.com/android-137752-1-1.html设置UILabel和UITextField的Insets http://www.apk ...
- Linux运维工程师面试-部分题库
一.Linux操作系统知识 1.常见的Linux发行版本都有什么?你最擅长哪一个?它的官网网站是什么?说明你擅长哪一块? 2.Linux开机启动流程详细步骤是什么?系统安装完,忘记密码如何破解? ...
- linux串口编程参数配置详解(转)
1.linux串口编程需要的头文件 #include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数 ...
- 如何使用SetTimer
1.SetTimer定义在那里? SetTimer表示的是定义个定时器.根据定义指定的窗口,在指定的窗口(CWnd)中实现OnTimer事件,这样,就可以相应事件了. SetTimer有两个函数.一个 ...
- Python学习笔记(七)—— 循环
一.for ... in ... 循环 1.语法 names = ['Michael', 'Bob', 'Tracy'] for name in names: print(name) (1)需要有冒号 ...
- 【java】详解JFrame结构的分层
在这篇博文中,笔者会介绍JFrame窗口的分层.JFrame继承自Frame,同JFrame.JDialog.JApplet都是重量级组件.如果不弄清楚Frame的分层结构,那么在设置组件的某些特效的 ...
- SSM框架配置文件
1.Spring <?xml version="1.0" encoding="UTF-8"?> <beans:beans xmlns=&quo ...
- ToString()的各种用法(大全) C# 获取所有国家时间格式
ToString()的各种用法(大全) 常用例子: string str = ""; str = 123456.ToString("N"); //生成 12 ...