siamese网络

- 之前记录过: https://www.cnblogs.com/ranjiewen/articles/7736089.html

- 原始的siamese network: 输入一个piar和与之对应的label,然后在输入一个batch进行训练;数据为mnist时,网络输出为2维特征,具有降维的作用!

- 损失函数,相似度距离的定义等。比如将损失函数的指数形式用hige loss代替等,即:

-> yi*||CNN(p1i)-CNN(p2i)||^2 + (1-yi)*max(0, C-||CNN(p1i)-CNN(p2i)||^2)

- tensflow实现:tensorflow实现siamese网络(附代码)

- Face recognition based on SiameseNet;思路也是构建pair训练,loss改成了网络输出特征变换后进行sigmoid输出;

- 思考测试的时候,人脸验证怎么做的?

- 怎么引申到 use the pairwise ranking hinge loss?

tripletnet

- Face Recognition for the Happy House

- https://github.com/andreasveit/triplet-network-pytorch

- tensorflow-triplet-loss


  • 如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。

  • triplet loss 原理以及梯度推导
  • 如何在caffe中增加layer以及caffe中triplet loss layer的实现

siamese网络&&tripletnet的更多相关文章

  1. Siamese网络

    1.       对比损失函数(Contrastive Loss function) 孪生架构的目的不是对输入图像进行分类,而是区分它们.因此,分类损失函数(如交叉熵)不是最合适的选择,这种架构更适合 ...

  2. Pytorch 入门之Siamese网络

    首次体验Pytorch,本文参考于:github and PyTorch 中文网人脸相似度对比 本文主要熟悉Pytorch大致流程,修改了读取数据部分.没有采用原作者的ImageFolder方法:   ...

  3. tensorflow实现siamese网络 (附代码)

    转载自:https://blog.csdn.net/qq1483661204/article/details/79039702 Learning a Similarity Metric Discrim ...

  4. paper 164: Siamese网络--相似度量方法

    简介:    Siamese网络是一种相似性度量方法,当类别数多,但每个类别的样本数量少的情况下可用于类别的识别.分类等.传统的用于区分的分类方法是需要确切的知道每个样本属于哪个类,需要针对每个样本有 ...

  5. 孪生网络入门(上) Siamese Net及其损失函数

    最近在多个关键词(小数据集,无监督半监督,图像分割,SOTA模型)的范畴内,都看到了这样的一个概念,孪生网络,所以今天有空大概翻看了一下相关的经典论文和博文,之后做了一个简单的案例来强化理解.如果需要 ...

  6. Siamese Network理解

    提起siamese network一般都会引用这两篇文章: <Learning a similarity metric discriminatively, with application to ...

  7. [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...

  8. 卷积网络中的通道(Channel)和特征图

    转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前 ...

  9. [转] Siamese network 孪生神经网络--一个简单神奇的结构

    转自: 作者:fighting41love 链接:https://www.jianshu.com/p/92d7f6eaacf5 1.名字的由来 Siamese和Chinese有点像.Siam是古时候泰 ...

随机推荐

  1. Android-Binder原理浅析

    Android-Binder原理浅析 学习自 <Android开发艺术探索> 写在前头 在上一章,我们简单的了解了一下Binder并且通过 AIDL完成了一个IPC的DEMO.你可能会好奇 ...

  2. OSNIT信息收集分析框架OSRFramework

     OSNIT信息收集分析框架OSRFramework OSNIT是一种从公开的信息资源搜集信息的有效方式.Kali Linux集成了一款专用分析工具集OSRFramework.该工具集包含多个常用工具 ...

  3. Atcoder Tenka1 Programmer Contest 2019 题解

    link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...

  4. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  5. linux 下安装 RZ SZ命令 以及使用

    对于经常使用Linux系统的人员来说,少不了将本地的文件上传到服务器或者从服务器上下载文件到本地,rz / sz命令很方便的帮我们实现了这个功能,rz是把win的文件上传到linux上    sz是吧 ...

  6. vue项目开发之v-for列表渲染的坑

    不知道大家在用vue开发的过程中有没有遇到过在使用v-for的时候会出现大片的黄色警告,比如下图: 其实这是因为没有写key的原因 :key是为vue的响应式渲染提供方法,在列表中单条数据改变的情况下 ...

  7. 利用 PHP 导出 Git 某个分支下,新增或修改过的文件

    使用 SVN 作为版本控制的时候,整理过一个 导出文件脚本:利用 PHP 导出 SVN 新增或修改过的文件 现在换成了 Git,整理出类似的脚本: [第一版]git.php <?php /** ...

  8. 魔兽私服TrinityCore 运行调试流程

    配置参见上一篇:TrinityCore 魔兽世界私服11159 完整配置 (1)启动Web服务器 打开TC2_Web_Mysql目录,运行“启动Web服务器.exe” 自动弹出帐号注册界面,并启动Ap ...

  9. 跟踪EBS客户端的IP地址

    Meterlink参考文档: How to Track IP Address of the Form Session in Oracle application 11i (文档 ID 878931.1 ...

  10. android studio build.gradle中 project.ANDROID_BUILD_SDK_VERSION

    1.メニューの [File] -> [Import Module]2.Source directory に先ほど解凍したディレクトリを指定3.「facebook」 を選択した状態に Finish ...