迷宫城堡

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19017    Accepted Submission(s):
8328

Problem Description
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
 
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
 
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include<stack>
using namespace std; #define MAXN 10010
#define MAXM 100010
stack<int>s;
int head[MAXN],dfn[MAXN], low[MAXN], belong[MAXM];
int instack[]; // instack[]为是否在栈中的标记数组
int n, m, cnt, scnt, top, tot;
struct Edge
{
int v, next;
}e[MAXM]; //边结点数组 void add(int u,int v)
{
e[++cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt; }
void init()
{
cnt = ;
scnt=; //初始化连通分量标号
memset(head, -, sizeof(head));
memset(dfn, , sizeof(dfn)); //结点搜索的次序编号数组为0,同时可以当是否访问的数组使用
while(!s.empty()) s.pop();
} void Tarjan(int v)
{
int min,t;
dfn[v]=low[v]=cnt++;
instack[v]=;
s.push(v);
for(int i=head[v];i!=-;i=e[i].next)
{
int j=e[i].v;
if(!dfn[j])//未被访问
{
Tarjan(j);
// 更新结点v所能到达的最小次数层
if(low[v]>low[j])
low[v]=low[j];
}
else if(instack[j]&&low[v]>dfn[j])
{//如果j结点在栈内,
low[v]=dfn[j];
}
}
if(dfn[v]==low[v])
{//如果节点v是强连通分量的根
scnt++;
do
{
t=s.top();
s.pop();
instack[t]=;
belong[t]=scnt;
}
while(t!=v);
}
} int main()
{
while(scanf("%d%d",&n,&m) && (n || m))
{
init();
while(m--)
{
int u,v;
scanf("%d%d", &u, &v);
add(u,v);
}
cnt=;
for(int i = ; i <= n; i++) //枚举每个结点,搜索连通分量
{
if(!dfn[i]) //未被访问
{
Tarjan(i); //则找i结点的连通分量 }
}
if(scnt == ) printf("Yes\n"); //只有一个强连通分量,说明此图各个结点都可达
else printf("No\n");
}
return ;
}
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
 
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
 
Sample Output
Yes
No
 

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include<stack>
using namespace std; #define MAXN 10010
#define MAXM 100010
stack<int>s;
int head[MAXN],dfn[MAXN], low[MAXN], belong[MAXM];
int instack[]; // instack[]为是否在栈中的标记数组
int n, m, cnt, scnt, top, tot;
struct Edge
{
int v, next;
}e[MAXM]; //边结点数组 void add(int u,int v)
{
e[++cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt; }
void init()
{
cnt = ;
scnt=; //初始化连通分量标号,次序计数器,栈顶指针为0
memset(head, -, sizeof(head));
memset(dfn, , sizeof(dfn)); //结点搜索的次序编号数组为0,同时可以当是否访问的数组使用
while(!s.empty()) s.pop();
} void Tarjan(int v)
{
int min,t;
dfn[v]=low[v]=cnt++;
instack[v]=;
s.push(v);
for(int i=head[v];i!=-;i=e[i].next)
{
int j=e[i].v;
if(!dfn[j])
{
Tarjan(j);
if(low[v]>low[j])
low[v]=low[j];
}
else if(instack[j]&&low[v]>dfn[j])
{
low[v]=dfn[j];
}
}
if(dfn[v]==low[v])
{
scnt++;
do
{
t=s.top();
s.pop();
instack[t]=;
belong[t]=scnt;
}
while(t!=v);
}
} int main()
{
while(scanf("%d%d",&n,&m) && (n || m))
{
init();
while(m--)
{
int u,v;
scanf("%d%d", &u, &v);
add(u,v);
}
cnt=;
for(int i = ; i <= n; i++) //枚举每个结点,搜索连通分量
{
if(!dfn[i]) //未被访问
{
Tarjan(i); //则找i结点的连通分量 }
}
if(scnt == ) printf("Yes\n"); //只有一个强连通分量,说明此图各个结点都可达
else printf("No\n");
}
return ;
}
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std; #define MAXN 10010
#define MAXM 100010 struct Edge
{
int v, next;
}edge[MAXM]; //边结点数组 int first[MAXN], stack[MAXN], DFN[MAXN], Low[MAXN], Belong[MAXM];
// first[]头结点数组,stack[]为栈,DFN[]为深搜次序数组,Belong[]为每个结点所对应的强连通分量标号数组
// Low[u]为u结点或者u的子树结点所能追溯到的最早栈中结点的次序号
int instack[]; // instack[]为是否在栈中的标记数组
int n, m, cnt, scnt, top, tot; void init()
{
cnt = ;
scnt = top = tot = ; //初始化连通分量标号,次序计数器,栈顶指针为0
memset(first, -, sizeof(first));
memset(DFN, , sizeof(DFN)); //结点搜索的次序编号数组为0,同时可以当是否访问的数组使用
} void read_graph(int u, int v) //构建邻接表
{
edge[tot].v = v;
edge[tot].next = first[u];
first[u] = tot++;
} void Tarjan(int v) //Tarjan算法求有向图的强连通分量
{
int min, t;
DFN[v] = Low[v] = ++tot; //cnt为时间戳
instack[v] = ; //标记在栈中
stack[top++] = v; //入栈
for(int e = first[v]; e != -; e = edge[e].next)
{ //枚举v的每一条边
int j = edge[e].v; //v所邻接的边
if(!DFN[j])
{ //未被访问
Tarjan(j); //继续向下找
if(Low[v] > Low[j]) Low[v] = Low[j]; // 更新结点v所能到达的最小次数层
}
else if(instack[j] && DFN[j] < Low[v])
{ //如果j结点在栈内,
Low[v] = DFN[j];
}
}
if(DFN[v] == Low[v])
{ //如果节点v是强连通分量的根
scnt++; //连通分量标号加1
do
{
t = stack[--top]; //退栈
instack[t] = ; //标记不在栈中
Belong[t] = scnt; //出栈结点t属于cnt标号的强连通分量
}while(t != v); //直到将v从栈中退出
}
} void solve()
{
for(int i = ; i <= n; i++) //枚举每个结点,搜索连通分量
if(!DFN[i]) //未被访问
Tarjan(i); //则找i结点的连通分量
} int main()
{
while(scanf("%d%d",&n,&m) && (n || m))
{
init();
while(m--)
{
int u, v;
scanf("%d%d", &u, &v);
read_graph(u, v);
}
solve(); //求强连通分量
if(scnt == ) printf("Yes\n"); //只有一个强连通分量,说明此图各个结点都可达
else printf("No\n");
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector> using namespace std;
vector<int>gh1[];//向量
vector<int>gh2[];
int cnt;
int vir[];
void dfs1(int n)
{
int x;
vir[n] = ;
cnt++;
for (int i = ; i<gh1[n].size(); i++)
{
x = gh1[n].at(i);
if (vir[x] == )
dfs1(x);
}
}
void dfs2(int n)
{
int x;
vir[n] = ;
cnt++;
for (int i = ; i<gh2[n].size(); i++)
{
x = gh2[n].at(i);
if (vir[x] == )
dfs2(x);
}
} int main()
{
int m, n, a, b;
while (~scanf("%d%d", &n, &m) && (m || n))
{
for (int i = ; i <= n; i++)
{
gh1[i].clear();
gh2[i].clear();
}
for (int i = ; i <= m; i++)
{
scanf("%d%d", &a, &b);
gh1[a].push_back(b);
gh2[b].push_back(a);
}
memset(vir, , sizeof(vir));
cnt = ;
dfs1();//正的走一次
if (cnt != n)
{
printf("No\n");
continue;
}
memset(vir, , sizeof(vir));
cnt = ;
dfs2();//反的走一次
if (cnt != n)
{
printf("No\n");
continue;
}
printf("Yes\n"); } return ;
}

HDU 1269 迷宫城堡(向量)(Tarjan模版题)的更多相关文章

  1. HDU 1269 迷宫城堡(强连通)

    HDU 1269 迷宫城堡 pid=1269" target="_blank" style="">题目链接 题意:中文题 思路:强连通模板题 代 ...

  2. hdu 1269 迷宫城堡

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1269 迷宫城堡 Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个 ...

  3. HDU 1269 迷宫城堡(判断有向图强连通分量的个数,tarjan算法)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  4. hdu 1269 迷宫城堡 最简单的联通图题 kosaraju缩点算法

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  5. HDU 1269.迷宫城堡-Tarjan or 双向DFS

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. hdu 1269 迷宫城堡 (tarjan)

    迷宫城堡Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  7. hdu 1269 迷宫城堡(Targin算法)

    ---恢复内容开始--- 迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1269 -- 迷宫城堡【有向图求SCC的数目 &amp;&amp; 模板】

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. HDU 1269 迷宫城堡 (Kosaraju)

    题目链接:HDU 1269 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000), ...

随机推荐

  1. LeetCode OJ:Insert Interval

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...

  2. Android Studio 常用快捷键大全

    鉴于使用AndroidStudio进行Android 开发的人越来越多,笔者整理了一些常用的快捷键.方便读者查阅,提高开发效率.

  3. hpu 1267 Cafeteria (01背包)

    1267: Cafeteria [DP] 时间限制: 1 Sec 内存限制: 128 MB提交: 76 解决: 31 统计 题目描述 Nanae把饥肠辘辘的josnch带去一家自助餐厅,面对面前眼花缭 ...

  4. 微软IE团队发布《逃离XP》浏览器小游戏

    微软IE团队今天发布了一个有趣的小游戏<逃离Windows XP>,这款游戏可以工作在所有现代浏览器下,简单的街机风格可以让你尽情对XP施展破坏欲.微软发布XP及提供支持服务已经史无前例地 ...

  5. Windows折腾之路 兼谈纯净强迫情节

    早期新鲜感 想当年,终于有了第一台属于自己自由处置的电脑,1.2Ghz的CPU,256兆的内存.这在CPU刚刚上1G的年代,不说顶级,也算主流.操作系统呢,在别人的帮助下,装上新鲜的XP,各种的华丽, ...

  6. SpringContextUtil spring上下文获取工具类

    package com.midea.biz; import org.springframework.beans.BeansException; import org.springframework.c ...

  7. localforage 对不同浏览器 使用不同的缓存策略 , 大大提高了性能 ,IndexedDB,WebSQL 和 localStorage 三种存储模式

    支持回调的异步 API: 支持 IndexedDB,WebSQL 和 localStorage 三种存储模式(自动为你加载最佳的驱动程序): 支持 BLOB 和任意类型的数据,让您可以存储图片,文件等 ...

  8. 利用Teensy进行em410x卡模拟以及暴力破解em410x类门禁系统

    什么是低频?什么是EM410x? 首先,我不得不再次提一下那些工作在125khz频率下的低频卡(如:EM410X之类的),以便大家更好的阅读以下的内容. 什么是低频?以下就是低频的解释: 低频(LF, ...

  9. 37行代码实现一个简单的打游戏AI

    不废话,直接上码,跟神经网络一点关系都没有,这37行代码只能保证电脑的对敌牺牲率是1:10左右,如果想手动操控,注释掉autopilot后边的代码即可. 哪个大神有兴趣可以用tensorflow或者s ...

  10. WebGL编程指南案例解析之平移和旋转的矩阵实现

    手写各种矩阵: //矩阵 var vShader = ` attribute vec4 a_Position; uniform mat4 u_xformMatrix; void main(){ gl_ ...