一、TF-IDF

词项频率:

df:term frequency。 term在文档中出现的频率.tf越大,词项越重要.

文档频率:

tf:document frequecy。有多少文档包括此term,df越大词项越不重要.

词项权重计算公式:

tf-idf=tf(t,d)*log(N/df(t))
  • W(t,d):the weight of the term in document d
  • tf(t,d):the frequency of term t in document d
  • N:the number of documents
  • df(t):the number of documents that contain term t

二、JAVA实现

package com.javacore.algorithm;

import java.util.Arrays;
import java.util.List; /**
* Created by bee on 17/3/13.
* @version 1.0
* @author blog.csdn.net/napoay
*/
public class TfIdfCal { /**
*calculate the word frequency
* @param doc word vector of a doc
* @param term a word
* @return the word frequency of a doc
*/
public double tf(List<String> doc, String term) { double termFrequency = 0;
for (String str : doc) {
if (str.equalsIgnoreCase(term)) {
termFrequency++;
}
}
return termFrequency / doc.size();
} /**
*calculate the document frequency
* @param docs the set of all docs
* @param term a word
* @return the number of docs which contain the word
*/ public int df(List<List<String>> docs, String term) {
int n = 0;
if (term != null && term != "") { for (List<String> doc : docs) {
for (String word : doc) {
if (term.equalsIgnoreCase(word)) {
n++;
break;
}
}
}
} else {
System.out.println("term不能为null或者空串");
} return n;
} /**
*calculate the inverse document frequency
* @param docs the set of all docs
* @param term a word
* @return idf
*/ public double idf(List<List<String>> docs, String term) { System.out.println("N:"+docs.size());
System.out.println("DF:"+df(docs,term));
return Math.log(docs.size()/(double)df(docs,term));
} /**
* calculate tf-idf
* @param doc a doc
* @param docs document set
* @param term a word
* @return inverse document frequency
*/
public double tfIdf(List<String> doc, List<List<String>> docs, String term) { return tf(doc, term) * idf(docs, term);
} public static void main(String[] args) { List<String> doc1 = Arrays.asList("人工", "智能", "成为", "互联网", "大会", "焦点");
List<String> doc2 = Arrays.asList("谷歌", "推出", "开源", "人工", "智能", "系统", "工具");
List<String> doc3 = Arrays.asList("互联网", "的", "未来", "在", "人工", "智能");
List<String> doc4 = Arrays.asList("谷歌", "开源", "机器", "学习", "工具");
List<List<String>> documents = Arrays.asList(doc1, doc2, doc3,doc4); TfIdfCal calculator = new TfIdfCal(); System.out.println(calculator.tf(doc2, "开源"));
System.out.println(calculator.df(documents, "开源"));
double tfidf = calculator.tfIdf(doc2, documents, "谷歌");
System.out.println("TF-IDF (谷歌) = " + tfidf);
System.out.println(Math.log(4/2)*1.0/7); } }

执行结果:

0.14285714285714285
2
N:4
DF:2
TF-IDF (谷歌) = 0.09902102579427789

TF-IDF词项权重计算的更多相关文章

  1. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  2. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  3. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  4. 关键词权重计算算法:TF-IDF

    TF-IDF(Term Frequency–Inverse Document Frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或 ...

  5. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  6. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  7. (6)文本挖掘(三)——文本特征TFIDF权重计算及文本向量空间VSM表示

    建立文本数据数学描写叙述的过程分为三个步骤:文本预处理.建立向量空间模型和优化文本向量. 文本预处理主要採用分词.停用词过滤等技术将原始的文本字符串转化为词条串或者特点的符号串.文本预处理之后,每个文 ...

  8. tf-idf 词条权重计算

    在文本分类问题中,某些高频词一直出现,这样的词对区分文档的作用不大,例如: D1:  'Job was the chairman of Apple Inc.' D2:  'I like to use ...

  9. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

随机推荐

  1. django session入门详解

    概括性的讲: 1.django默认是打开对session的支持的 2.默认情况下session相关的数据会保存在数据库中.浏览器端只保存了session id session 的科普: 1.动态网站中 ...

  2. django -- model中只有Field类型的数据才能成为数据库中的列

    一.model的定义: from django.db import models # Create your models here. class Person(models.Model): firs ...

  3. 使用OkHttpClient处理json请求处理的方式

    今天遇到一个问题,重构老系统时,前端传递的参数是一个json,controller层可以用@ResponseBody来接收. 因为新系统用的是spring cloud这一套,调用其他服务使用的是fei ...

  4. php7+apache2.4 (Windows7下)安装

    条件: ( 电脑必须win7 sp1, .netframework4 ) 一.下载php7和apache2.4 首先下载php7的windows压缩包,到这里下载http://windows.php. ...

  5. spark-submit的参数名称解析

    执行时需要传入的参数说明 Usage: spark-submit [options] <app jar | Python file> [app options] 参数名称 含义 --mas ...

  6. Python 的并发编程

    这篇文章将讲解 Python 并发编程的基本操作.并发和并行是对孪生兄弟,概念经常混淆.并发是指能够多任务处理,并行则是是能够同时多任务处理.Erlang 之父 Joe Armstrong 有一张非常 ...

  7. IBAction:IBOutlet:注意事项

    1.IBAction: 1> 能保证方法能够连线 > 相当于void 2.IBOutlet: 1> 能保证属性能够连线 3.常见错误 setValue:forUndefinedKey ...

  8. OpenStack大规模部署详解

    https://blog.csdn.net/karamos/article/details/80130443 0.前言今年的2月22日,OpenStack发布了15个版本Ocata. 走过了7年的发展 ...

  9. (转)Python黑魔法 --- 异步IO( asyncio) 协程

    转自:http://www.jianshu.com/p/b5e347b3a17c?from=timeline Python黑魔法 --- 异步IO( asyncio) 协程 作者 人世间 关注 201 ...

  10. 【Java】Java复习笔记-三大排序算法,堆栈队列,生成无重复的随机数列

    冒泡排序 package com.lcw.bubble; public class BubbleSort { /** * 冒泡排序 * @param args * @author 成鹏致远 */ pu ...