2.3AutoEncoder
AutoEncoder是包含一个压缩和解压缩的过程,属于一种无监督学习的降维技术。

神经网络接受大量信息,有时候接受的数据达到上千万,可以通过压缩
提取原图片最具有代表性的信息,压缩输入的信息量,在将缩减后的数据放入神经网络中学习,如此学习起来变得轻松了
自编码在这个时候使用,可以将自编码归为无监督学习,类似于PCA,自编码可以为属性降维

手写体识别代码AutoEncoder
from __future__ import division, print_function, absolute_import import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=False) # Visualize decoder setting
# Parameters
learning_rate = 0.01
training_epochs = 5
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input]) # hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
} # Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 # Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 """ # Visualize encoder setting
# Parameters
learning_rate = 0.01 # 0.01 this learning rate will be better! Tested
training_epochs = 10
batch_size = 256
display_step = 1 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 #2D show weights = {
'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)), 'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4
""" # Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op) # Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X # Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") # # Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show() # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
# plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
# plt.colorbar()
# plt.show()

利用AutoEncoder进行类似于PCA的降维
代码:
from __future__ import division, print_function, absolute_import import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=False) """
# Visualize decoder setting
# Parameters
learning_rate = 0.01
training_epochs = 5
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input]) # hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
} # Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 # Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 """ # Visualize encoder setting
# Parameters
learning_rate = 0.01 # 0.01 this learning rate will be better! Tested
training_epochs = 10
batch_size = 256
display_step = 1 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 #2D show weights = {
'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)), 'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 # Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op) # Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X # Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") # # # Applying encode and decode over test set
# encode_decode = sess.run(
# y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# # Compare original images with their reconstructions
# f, a = plt.subplots(2, 10, figsize=(10, 2))
# for i in range(examples_to_show):
# a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
# a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
# plt.show() encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
plt.colorbar()
plt.show()
显示如下:

2.3AutoEncoder的更多相关文章
随机推荐
- Eclipse------新建文件时没有JSP File解决方法
1.为没有web选项的eclipse添加web and JavaEE插件 .在Eclipse中菜单help选项中选择install new software选项 .在work with 栏中输入 Ju ...
- flexbox子盒子align-self属性
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Django SimpleCMDB WSGI
一.WSGI 介绍 (1) 在前面的学习中,我们是通过 python manage.py runserver 0.0.0.0:8000 来启动并访问开发服务器的:(2) 但在实际中我们是通过直接访问 ...
- 带有ZLIB_LIBRARY_DEBUG的FindZLIB.cmake文件
CMake自带的FindZLIB.cmake只有ZLIB_LIBRARY,而没有ZLIB_LIBRARY_DEBUG 将下面的代码保存成FindZLIB.cmake,替换掉D:\Program Fil ...
- CopyTransform
// TransformCopier.cs v 1.1 // homepage: http://wiki.unity3d.com/index.php/CopyTransform using Unity ...
- [C] 如何使用头文件 .h 编译 C 源码
在 C 语言中,头文件或包含文件通常是一个源代码文件,程序员使用编译器指令将头文件包含进其他源文件的开始(或头部),由编译器在处理另一个源文件时自动包含进来. 一个头文件一般包含类.子程序.变量和其他 ...
- update select 多字段
update Countrys set ( Abbreviation_cn, Abbreviation_en, Two_code,Three_code, Number_code)= (select [ ...
- Ubuntu Releases 版本下载站
http://releases.ubuntu.com/
- 九度OJ小结
1. 高精度问题 可参考题目 题目1137:浮点数加法 http://ac.jobdu.com/problem.php?pid=1137 对于高精度问题可以考虑使用结构体.上述为浮点数加法,因此该 ...
- [原]sublime Text2
sublime Text2 升级到 2.0.2 build 2221 64位 的破破解 sublime Text2 download website 链接: http://pan.baidu.com/ ...