POJ 1556 - The Doors - [平面几何+建图spfa最短路]
题目链接:http://poj.org/problem?id=1556
Time Limit: 1000MS Memory Limit: 10000K
Description

Input
2
4 2 7 8 9
7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.
Output
Sample Input
1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1
Sample Output
10.00
10.06
题意:
给出一个(0,0)(0,10)(10,0)(10,10)的正方形房子,里面有一些墙,每堵墙上有两扇门;
求从(0,5)到(10,5)的最短距离;
题解:
是一道不错的题目,一定程度上结合了计算几何和最短路;
建一个有向图,把(0,5)作为起始点,(10,5)作为目标点,其他所有墙上的门的两个端点也加入到这个有向图中;
尝试枚举连接任意两个点,只有当这两个点之间没有墙阻隔,这连个点才可能连接起来;
所有能连接起来的两个点都作为一条有向边加入到有向图中,并且靠左的作为u,靠右的作为v,而两点之间的距离作为w;
最后,我们只要求出起始点和目标点之间的最短路即可。
AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
#define MAXN 4*20
#define INF 0x3f3f3f3f
using namespace std; //--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; //向量的加减乘除
Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);} int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} //向量的点积,长度,夹角
double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
double Length(Vctor A){return sqrt(Dot(A,A));}
double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积
double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //判断线段是否规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} //--------------------------------------计算几何模板 - ed-------------------------------------- //--------------------------------------spfa算法 - st--------------------------------------
double d[MAXN];
double mp[MAXN][MAXN];
bool vis[MAXN];
void init(int n){for(int i=;i<n;i++) for(int j=;j<n;j++) mp[i][j]=;}
void addedge(int u,int v,double w){mp[u][v]=w;}
void spfa(int st,int n)
{
for(int i=;i<n;i++)
{
i==st ? d[i]= : d[i]=INF;
vis[i]=;
}
queue<int> q;
q.push(st);
vis[st]=;
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=;
for(int v=;v<n;v++)
{
if(u==v || mp[u][v]==) continue;
double tmp=d[v];
if(d[v]>d[u]+mp[u][v]) d[v]=d[u]+mp[u][v];
if(d[v]<tmp && !vis[v])
{
q.push(v);
vis[v]=;
}
}
}
}
//--------------------------------------spfa算法 - ed-------------------------------------- int n;
vector<Point> p;
int main()
{
while(scanf("%d",&n) && n!=-)
{
p.clear();
p.push_back(Point(,));
for(int i=;i<=n;i++)
{
double x,y1,y2,y3,y4;
scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
p.push_back(Point(x,y1));
p.push_back(Point(x,y2));
p.push_back(Point(x,y3));
p.push_back(Point(x,y4));
}
p.push_back(Point(,)); int _size=p.size();
init(_size);
for(int i=;i<_size;i++)
{
for(int j=i+;j<_size;j++)
{
if(p[i].x==p[j].x) continue; bool ok=;
for(int k=i+;k<j;k++)
{
if(k%==)
{
if(SegmentProperIntersection(p[i],p[j],p[k],Point(p[k].x,)))
{
ok=;
break;
}
}
else if(k%==)
{
if(SegmentProperIntersection(p[i],p[j],p[k],p[k+]))
{
ok=;
break;
}
}
else if(k%==)
{
if(SegmentProperIntersection(p[i],p[j],p[k],p[k-]))
{
ok=;
break;
}
}
else if(k%==)
{
if(SegmentProperIntersection(p[i],p[j],p[k],Point(p[k].x,)))
{
ok=;
break;
}
}
}
if(ok) addedge(i,j,Length(p[i]-p[j]));
}
} spfa(,_size);
printf("%.2f\n",d[_size-]);
}
}
POJ 1556 - The Doors - [平面几何+建图spfa最短路]的更多相关文章
- NOIP2013 华容道 (棋盘建图+spfa最短路)
#include <cstdio> #include <algorithm> #include <cstring> #include <queue> # ...
- poj 1556 The Doors(线段相交,最短路)
The Doors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7430 Accepted: 2915 Descr ...
- POJ 1556 The Doors 线段交 dijkstra
LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...
- POJ 1556 - The Doors 线段相交不含端点
POJ 1556 - The Doors题意: 在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少. 分析: 要么直达,要么 ...
- poj 2135 Farm Tour 最小费用最大流建图跑最短路
题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...
- POJ 3687 Labeling Balls 逆向建图,拓扑排序
题目链接: http://poj.org/problem?id=3687 要逆向建图,输入的时候要判重边,找入度为0的点的时候要从大到小循环,尽量让编号大的先入栈,输出的时候注意按编号的顺序输出重量, ...
- Invitation Cards(邻接表+逆向建图+SPFA)
Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 17538 Accepted: 5721 Description In ...
- CF786B Legacy 线段树优化建图 + spfa
CodeForces 786B Rick和他的同事们做出了一种新的带放射性的婴儿食品(???根据图片和原文的确如此...),与此同时很多坏人正追赶着他们.因此Rick想在坏人们捉到他之前把他的遗产留给 ...
- 简单几何(线段相交+最短路) POJ 1556 The Doors
题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...
随机推荐
- [转]spring 官方下载地址(Spring Framework 3.2.x&Spring Framework 4.0.x)
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径: h ...
- Explaining Delegates in C# - Part 3 (Events 2)
I was thinking that the previous post on Events and Delegates was quite self-explanatory. A couple o ...
- 数字图像处理笔记与体会(一)——matlab编程基础
最近开始学习数字图像处理,使用matlab实现,下面我就来记录笔记和体会,一方面是给大家提供参考,另一方面是防止我忘记了. 复习一下: 1.数字图像是用一个数字矩阵来表示的,数字阵列中的每个数字,表示 ...
- ajax和promise的结合使用
在需要依赖完成的ajax请求可使用promise保证执行顺序 在第一个请求正确返回后再发送第二个请求 /* 定义一个使用promise的ajax请求,这里依赖jquery 参数中请求url为必填参数 ...
- Android学习之适配器ArrayAdapter SimpleAdapter
Adapter是个什么角色呢?其实它的作用就是View界面和数据之间的桥梁.我们可以看作是界面数据绑定的一种理解,它所操纵的数据一般都是一些比较复杂的数据,如数组,链表,数据库,集合等. 常用的适配器 ...
- PHP 简易导出excel 类解决Excel 打开乱码
<?php class exportCsv{ //列名 protected $_column = array(); protected $_reg = array(); public $ret ...
- it 删除远程分支
一不小心把本地的临时分支push到server上去了,想要删除.一开始用git branch -r -d origin/branch-name不成功,发现只是删除的本地对该远程分支的track,正 ...
- Android Studio中R报错(cnanot resolve symbol R)
我的解决办法: Tools -> Android -> Sync Project with Gradle Files Build -> Clean Project 然后就好了 PS: ...
- Linux平台下mysql的ODBC配置方法
在安装配置之前, 需要先大概了解一下MyODBC的架构. MyODBC体系结构建立在5个组件上,如下图所示: Driver Manager: 负责管理应用程序和驱动程序间的通信, 主要功能包括: 解析 ...
- Undeclared identifier:XXX
未识别错误,是因拼写错误或找不到定义文件. 下面列举一些类型和函数用到的单元. _Stream ADODB_TLB akTop, akLeft, akRight, akBottom Controls ...