一文读懂BERT中的WordPiece
1. 前言
2018年最火的论文要属google的BERT,不过今天我们不介绍BERT的模型,而是要介绍BERT中的一个小模块WordPiece。
2. WordPiece原理
现在基本性能好一些的NLP模型,例如OpenAI GPT,google的BERT,在数据预处理的时候都会有WordPiece的过程。WordPiece字面理解是把word拆成piece一片一片,其实就是这个意思。
WordPiece的一种主要的实现方式叫做BPE(Byte-Pair Encoding)双字节编码。
BPE的过程可以理解为把一个单词再拆分,使得我们的此表会变得精简,并且寓意更加清晰。
比如"loved","loving","loves"这三个单词。其实本身的语义都是“爱”的意思,但是如果我们以单词为单位,那它们就算不一样的词,在英语中不同后缀的词非常的多,就会使得词表变的很大,训练速度变慢,训练的效果也不是太好。
BPE算法通过训练,能够把上面的3个单词拆分成"lov","ed","ing","es"几部分,这样可以把词的本身的意思和时态分开,有效的减少了词表的数量。
3. BPE算法
BPE的大概训练过程:首先将词分成一个一个的字符,然后在词的范围内统计字符对出现的次数,每次将次数最多的字符对保存起来,直到循环次数结束。
我们模拟一下BPE算法。
我们原始词表如下:
{'l o w e r ': 2, 'n e w e s t ': 6, 'w i d e s t ': 3, 'l o w ': 5}
其中的key是词表的单词拆分层字母,再加代表结尾,value代表词出现的频率。
下面我们每一步在整张词表中找出频率最高相邻序列,并把它合并,依次循环。
原始词表 {'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3, 'l o w </w>': 5}
出现最频繁的序列 ('s', 't') 9
合并最频繁的序列后的词表 {'n e w e st </w>': 6, 'l o w e r </w>': 2, 'w i d e st </w>': 3, 'l o w </w>': 5}
出现最频繁的序列 ('e', 'st') 9
合并最频繁的序列后的词表 {'l o w e r </w>': 2, 'l o w </w>': 5, 'w i d est </w>': 3, 'n e w est </w>': 6}
出现最频繁的序列 ('est', '</w>') 9
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'l o w e r </w>': 2, 'n e w est</w>': 6, 'l o w </w>': 5}
出现最频繁的序列 ('l', 'o') 7
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'lo w e r </w>': 2, 'n e w est</w>': 6, 'lo w </w>': 5}
出现最频繁的序列 ('lo', 'w') 7
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'low e r </w>': 2, 'n e w est</w>': 6, 'low </w>': 5}
出现最频繁的序列 ('n', 'e') 6
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'low e r </w>': 2, 'ne w est</w>': 6, 'low </w>': 5}
出现最频繁的序列 ('w', 'est</w>') 6
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'low e r </w>': 2, 'ne west</w>': 6, 'low </w>': 5}
出现最频繁的序列 ('ne', 'west</w>') 6
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'low e r </w>': 2, 'newest</w>': 6, 'low </w>': 5}
出现最频繁的序列 ('low', '</w>') 5
合并最频繁的序列后的词表 {'w i d est</w>': 3, 'low e r </w>': 2, 'newest</w>': 6, 'low</w>': 5}
出现最频繁的序列 ('i', 'd') 3
合并最频繁的序列后的词表 {'w id est</w>': 3, 'newest</w>': 6, 'low</w>': 5, 'low e r </w>': 2}
这样我们通过BPE得到了更加合适的词表了,这个词表可能会出现一些不是单词的组合,但是这个本身是有意义的一种形式,加速NLP的学习,提升不同词之间的语义的区分度。
4. 学习资料
介绍一些关于WordPiece和BPE的资料供同学们参考。
- https://github.com/tensorflow/models
- https://github.com/rsennrich/subword-nmt
- tensor2tensor的subword
- seq2seq的bpe
- Neural Machine Translation of Rare Words with Subword Units
- BPEmb: Tokenization-free Pre-trained Subword Embeddings
in 275 Languages - BPEmb使用方法
5. 总结
WordPiece或者BPE这么好,我们是不是哪里都能这么用呢?其实在我们的中文中不是很适用。首先我们的中文不像英文或者其他欧洲的语言一样通过空格分开,我们是连续的。其次我们的中文一个字就是一个最小的单元,无法在拆分的更小了。在中文中一般的处理方式是两中,分词和分字。理论上分词要比分字好,因为分词更加细致,语义分的更加开。分字简单,效率高,词表也很小,常用字就3000左右。
一文读懂BERT中的WordPiece的更多相关文章
- 一文读懂Java中的动态代理
从代理模式说起 回顾前文: 设计模式系列之代理模式(Proxy Pattern) 要读懂动态代理,应从代理模式说起.而实现代理模式,常见有下面两种实现: (1) 代理类关联目标对象,实现目标对象实现的 ...
- 一文读懂JS中的原型和原型链(图解)
讲原型的时候,我们应该先要记住以下几个要点,这几个要点是理解原型的关键: 1.所有的引用类型(数组.函数.对象)可以自由扩展属性(除null以外). 2.所有的引用类型都有一个’_ _ proto_ ...
- 一文读懂 .NET 中的高性能队列 Channel
介绍 System.Threading.Channels 是.NET Core 3.0 后推出的新的集合类型, 具有异步API,高性能,线程安全等特点,它可以用来做消息队列,进行数据的生产和消费, 公 ...
- 一文读懂高性能网络编程中的I/O模型
1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...
- 一文读懂神经网络训练中的Batch Size,Epoch,Iteration
一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小, ...
- 一文读懂数仓中的pg_stat
摘要:GaussDB(DWS)在SQL执行过程中,会记录表增删改查相关的运行时统计信息,并在事务提交或回滚后记录到共享的内存中.这些信息可以通过 "pg_stat_all_tables视图& ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
- 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...
- 从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
本文原作者阮一峰,作者博客:ruanyifeng.com. 1.引言 HTTP 协议是最重要的互联网基础协议之一,它从最初的仅为浏览网页的目的进化到现在,已经是短连接通信的事实工业标准,最新版本 HT ...
随机推荐
- SqlServer2005 海量数据 数据表分区解决难题
超大型数据库的大小常常达到数百GB,有时甚至要用TB来计算.而单表的数据量往往会达到上亿的记录,并且记录数会随着时间而增长.这不但影响着数据库的运行效率,也增大数据库的维护难度.除了表的数据量外,对表 ...
- Newtonsoft.Json C# Json序列化和反序列化工具的使用、类型方法大全 C# 算法题系列(二) 各位相加、整数反转、回文数、罗马数字转整数 C# 算法题系列(一) 两数之和、无重复字符的最长子串 DateTime Tips c#发送邮件,可发送多个附件 MVC图片上传详解
Newtonsoft.Json C# Json序列化和反序列化工具的使用.类型方法大全 Newtonsoft.Json Newtonsoft.Json 是.Net平台操作Json的工具,他的介绍就 ...
- nginx / apache / tomcat /resin等 http server的benchmark性能测试方法
性能测试是软件产品发布前必经阶段,对于web app的发布需要使用http server,可选择的优秀免费http server主要有开源apache server, 俄国的nginx,专用于java ...
- 跟我学SharePoint 2013视频培训课程——网站导航及页面元素(2)
课程简介 第2天,介绍SharePoint 2013 网站导航及页面元素 视频 SharePoint 2013 交流群 41032413
- [转]Redis几个认识误区
转自timyang:http://timyang.net/data/redis-misunderstanding/ 前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出Jam ...
- 增量式pid和位置式PID参数整定过程对比
//增量式PID float IncPIDCalc(PID_Typedef* PIDx,float SetValue,float MeaValue)//err»ý·Ö·ÖÀë³£Êý { PIDx-& ...
- [转]session和cookie的区别和联系,session的生命周期,多个服务部署时session管理
Session和Cookie的区别 对象 信息量大小 保存时间 应用范围 保存位置 Session 小量,简单的数据 用户活动时间+一段延迟时间(一般为20分钟) 单个用户 服务器端 Cookie 小 ...
- 使用mysql innodb 使用5.7的json类型遇到的坑和解决办法
---------------------------------------------- #查询JSON的某个字段 select data -> '$.Host' from temp #创建 ...
- WPF编程学习——窗口
转自 http://www.cnblogs.com/libaoheng/archive/2011/11/18/2253751.html 本文目录 1.窗口的外观 2.窗口的位置 3.窗口的大小 4.窗 ...
- java 时间间隔天数
public static Long getDaysBetween(long startDate, long endDate) { Calendar fromCalendar = Calendar.g ...