import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('D:\\myfiles\\study\\python\\analyse\\数据团\\城市数据团_数据分析师_体验课_课程资料\\数据资料\\地市级党委书记数据库(2000-10).csv', encoding='gbk')
# 新建变量data_age,赋值包括年份、出生年份字段内容
# 清除缺失值
data_age = data[['出生年份','党委书记姓名','年份']]
data_age_re = data_age[data_age['出生年份'].notnull()]
# 计算出整体年龄数据
df1 = 2017 - data_age_re['出生年份']
# 计算出入职年龄数据
df_yearmin = data_age_re[['党委书记姓名','年份']].groupby(data_age_re['党委书记姓名']).min()
df2 = df_yearmin['年份'].groupby(df_yearmin['年份']).count() df_yearmax = data_age_re[['党委书记姓名','年份']].groupby(data_age_re['党委书记姓名']).max()
df3 = df_yearmax['年份'].groupby(df_yearmax['年份']).count() # 专业情况:专业结构 / 专业整体情况 / 专业大类分布
# 新建变量data_major,赋值包括年份、专业等字段内容,其中1代表是,0代表否
# 清除缺失值
data_major = data[['党委书记姓名','年份','专业:人文','专业:社科','专业:理工','专业:农科','专业:医科']]
data_major_re = data_major[data_major['专业:人文'].notnull()]
# 统计每个人的专业
data_major_re['专业'] = data_major_re[['专业:人文', '专业:社科', '专业:理工', '专业:农科', '专业:医科']].idxmax(axis=1)
# 去重
data_major_st = data_major_re[['专业','党委书记姓名']].drop_duplicates()
# 计算出学历结构数据
df4 = data_major_st['专业'].groupby(data_major_st['专业']).count()
# 计算每年专业整体情况数据
df5 = pd.crosstab(data_major_re['年份'], data_major_re['专业'])
# 计算每年专业大类分布数据
df5['社科比例'] = df5['专业:社科'] / (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文'])
df5['人文比例'] = df5['专业:人文'] / (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文'])
df5['理工农医比例'] = (df5['专业:理工'] + df5['专业:医科'] + df5['专业:农科'])/ (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文']) # 年龄情况:图表绘制
# 创建一个图表,大小为12*8
fig_q2 = plt.figure(figsize = (14,12))
# 创建一个3*2的表格矩阵
ax1 = fig_q2.add_subplot(2,3,1)
ax2 = fig_q2.add_subplot(2,3,2)
ax3 = fig_q2.add_subplot(2,3,3)
ax4 = fig_q2.add_subplot(2,3,4)
ax5 = fig_q2.add_subplot(2,3,5)
ax6 = fig_q2.add_subplot(2,3,6)
# 绘制第一个表格
ax1.hist(df1,bins = 11,color = 'gray', alpha=0.9)
ax1.set_title('整体年龄分布')
ax1.grid(True) # 绘制第二个表格
ax2.plot(df2,color = 'r',marker = 'o',alpha=0.9)
ax2.set_title('入职年龄分布')
ax2.set_xticks(range(2000,2011,2))
ax2.grid(True) # 绘制第三个表格
ax3.plot(df3,color = 'g',marker = 'o',alpha=0.9)
ax3.set_title('卸任年龄分布')
ax3.set_xticks(range(2000,2011,2))
ax3.grid(True) # 绘制第四个表格
ax4.bar(range(len(df4)),df4,color = 'y')
ax4.set_xticklabels(['人文','农科','医科','理工','社科'])
ax4.grid(True)
ax4.set_title('专业结构') # 绘制第五个表格
ax5.plot(df5.index,df5[['专业:人文','专业:农科','专业:医科','专业:理工','专业:社科']])
ax5.grid(True)
ax5.set_title('专业整体情况') # 绘制第六个表格
ax6.bar(df5.index,df5['社科比例'],color = 'darkred',alpha=0.7)
ax6.bar(df5.index,df5['人文比例'],color = 'darkred',bottom = df5['社科比例'],alpha=0.5)
ax6.bar(df5.index,df5['理工农医比例'],color = 'darkred',bottom = df5['人文比例'] + df5['社科比例'],alpha=0.3)
ax6.grid(True)
ax6.set_title('专业大类分布:社科、人文、理工农医') plt.show()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('D:\\myfiles\\study\\python\\analyse\\数据团\\城市数据团_数据分析师_体验课_课程资料\\数据资料\\地市级党委书记数据库(2000-10).csv', encoding='gbk')
# 新建变量data_age,赋值包括年份、出生年份字段内容
# 清除缺失值
data_age = data[['出生年份','党委书记姓名','年份']]
data_age_re = data_age[data_age['出生年份'].notnull()]
# 计算出整体年龄数据
df1 = 2017 - data_age_re['出生年份']
# 计算出入职年龄数据
df_yearmin = data_age_re[['党委书记姓名','年份']].groupby(data_age_re['党委书记姓名']).min()
df2 = df_yearmin['年份'].groupby(df_yearmin['年份']).count() df_yearmax = data_age_re[['党委书记姓名','年份']].groupby(data_age_re['党委书记姓名']).max()
df3 = df_yearmax['年份'].groupby(df_yearmax['年份']).count() # 专业情况:专业结构 / 专业整体情况 / 专业大类分布
# 新建变量data_major,赋值包括年份、专业等字段内容,其中1代表是,0代表否
# 清除缺失值
data_major = data[['党委书记姓名','年份','专业:人文','专业:社科','专业:理工','专业:农科','专业:医科']]
data_major_re = data_major[data_major['专业:人文'].notnull()]
# 统计每个人的专业
data_major_re['专业'] = data_major_re[['专业:人文', '专业:社科', '专业:理工', '专业:农科', '专业:医科']].idxmax(axis=1)
# 去重
data_major_st = data_major_re[['专业','党委书记姓名']].drop_duplicates()
# 计算出学历结构数据
df4 = data_major_st['专业'].groupby(data_major_st['专业']).count()
# 计算每年专业整体情况数据
df5 = pd.crosstab(data_major_re['年份'], data_major_re['专业'])
# 计算每年专业大类分布数据
df5['社科比例'] = df5['专业:社科'] / (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文'])
df5['人文比例'] = df5['专业:人文'] / (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文'])
df5['理工农医比例'] = (df5['专业:理工'] + df5['专业:医科'] + df5['专业:农科'])/ (df5['专业:理工'] + df5['专业:医科'] + df5['专业:社科'] + df5['专业:农科'] + df5['专业:人文']) # 年龄情况:图表绘制
# 创建一个图表,大小为12*8
fig_q2 = plt.figure(figsize = (14,12))
# 创建一个3*2的表格矩阵
ax1 = fig_q2.add_subplot(2,3,1)
ax2 = fig_q2.add_subplot(2,3,2)
ax3 = fig_q2.add_subplot(2,3,3)
ax4 = fig_q2.add_subplot(2,3,4)
ax5 = fig_q2.add_subplot(2,3,5)
ax6 = fig_q2.add_subplot(2,3,6)
# 绘制第一个表格
ax1.hist(df1,bins = 11,color = 'gray', alpha=0.9)
ax1.set_title('整体年龄分布')
ax1.grid(True) # 绘制第二个表格
ax2.plot(df2,color = 'r',marker = 'o',alpha=0.9)
ax2.set_title('入职年龄分布')
ax2.set_xticks(range(2000,2011,2))
ax2.grid(True) # 绘制第三个表格
ax3.plot(df3,color = 'g',marker = 'o',alpha=0.9)
ax3.set_title('卸任年龄分布')
ax3.set_xticks(range(2000,2011,2))
ax3.grid(True) # 绘制第四个表格
ax4.bar(range(len(df4)),df4,color = 'y')
ax4.set_xticklabels(['人文','农科','医科','理工','社科'])
ax4.grid(True)
ax4.set_title('专业结构') # 绘制第五个表格
ax5.plot(df5.index,df5[['专业:人文','专业:农科','专业:医科','专业:理工','专业:社科']])
ax5.grid(True)
ax5.set_title('专业整体情况') # 绘制第六个表格
ax6.bar(df5.index,df5['社科比例'],color = 'darkred',alpha=0.7)
ax6.bar(df5.index,df5['人文比例'],color = 'darkred',bottom = df5['社科比例'],alpha=0.5)
ax6.bar(df5.index,df5['理工农医比例'],color = 'darkred',bottom = df5['人文比例'] + df5['社科比例'],alpha=0.3)
ax6.grid(True)
ax6.set_title('专业大类分布:社科、人文、理工农医') plt.show()

  

使用MATPLOTLIB 制图(小图)的更多相关文章

  1. 使用MATPLOTLIB 制图(散点图,热力图)

    import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('D:\\myfil ...

  2. 使用matplotlib 制图(柱状图、箱型图)

    柱状图: import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('D:\\myfiles\\study\\pyt ...

  3. 【转】matplotlib制图——图例legend

    转自:https://www.cnblogs.com/alimin1987/p/8047833.html import matplotlib.pyplot as pltimport numpy as ...

  4. 012 pandas与matplotlib结合制图

    这里以后再补充. 1.折线图

  5. Matplotlib基本使用简介

    目录 Matplotlib基本使用简介 1. Matplotlib简介 2. Matplotlib操作简介 Matplotlib基本使用简介 1. Matplotlib简介   Matplotlib是 ...

  6. Matplotlib 学习笔记

    注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...

  7. Python图表绘制:matplotlib绘图库入门

    matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并 ...

  8. matplotlib库的常用知识

    看看matplotlib是什么? matplotlib是python上的一个2D绘图库,它可以在夸平台上边出很多高质量的图像.综旨就是让简单的事变得更简单,让复杂的事变得可能.我们可以用matplot ...

  9. python 绘图工具 matplotlib 入门

    转自: http://www.cnblogs.com/kaituorensheng/p/3440273.html matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的 ...

随机推荐

  1. DOS批处理 - 函数教程

    DOS Batch - Function Tutorial What it is, why it`s important and how to write your own. Description: ...

  2. iview admin 发布到IIS

    公司项目打算做前后端分离,选型最后选了vue+webapi的模式.于是在网上找到了iview及iview admin 这个后台管理模板,里面东西很完善.有这么好的东西,而且MIT协议,项目本身也比较简 ...

  3. 【转】每天一个linux命令(34):du 命令

    原文网址:http://www.cnblogs.com/peida/archive/2012/12/10/2810755.html Linux du命令也是查看使用空间的,但是与df命令不同的是Lin ...

  4. oracle之 变更OS时间对数据库的影响

    本文:说明提供了操作系统日期变更对数据库.应用程序数据和作业的影响. 1.它将会影响插入的任何记录,如果涉及到sysdate,则更改日期.2.它还会影响在那个日期运行的任何调度器作业. 如果将系统时间 ...

  5. Servlet 实现网页计数器

    创建CounterSerlet, 使用getServletContext,ServletContext 从request.getSession().getServletContext();获得 @We ...

  6. 查看 linux cpu 、内存、服务器型号和序列号、磁盘、raid 的信息

    yum -y install dmidecode 查看cpu的型号: 查看cpu的颗数:dmidecode -t processor |grep "Version"dmidecod ...

  7. linux sh文件提示 no such file or directory

    Linux执行.sh文件,提示No such file or directory的问题的解决方法 12-06-28 16:59作者:love__coder Linux执行.sh文件,提示No such ...

  8. DHCP服务器备份、还原、迁移

    备份DHCP服务器 $today = get-date $todayu = get-date -format 'yyyyMMdd' #备份DHCP数据库,用于还原到本地 Backup-DhcpServ ...

  9. [转]Windows 注册自定义的协议

    [转自] http://blog.sina.com.cn/s/blog_86e4a51c01010nik.html 1.注册应用程序来处理自定义协议 你必须添加一个新的key以及相关的value到HK ...

  10. 在chrome中安装基于REST的web服务客户端

    基于REST的Web服务客户端的使用方法 点击转到基于REST的Web服务客户端下载页面 chrome浏览器如果安装扩展程序点击chrome浏览器右上角,选择“设置在“设置”对话框里选择“扩展程序”然 ...