数据过滤与排序------探索2012欧洲杯数据

相关数据见(github

步骤1 - 导入pandas库

import pandas as pd

步骤2 - 数据集

path2 = "./data/Euro2012.csv"      # Euro2012.csv

步骤3 - 将数据集命名为euro12

euro12 = pd.read_csv(path2)
euro12.tail()

输出:

步骤4 选取 Goals 这一列

euro12.Goals  # euro12['Goals'] 

输出:

步骤5 有多少球队参与了2012欧洲杯?

euro12.shape[0]

输出:

16

步骤6 该数据集中一共有多少列(columns)?

euro12.info()

输出:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 35 columns):
Team 16 non-null object
Goals 16 non-null int64
Shots on target 16 non-null int64
Shots off target 16 non-null int64
Shooting Accuracy 16 non-null object
% Goals-to-shots 16 non-null object
Total shots (inc. Blocked) 16 non-null int64
Hit Woodwork 16 non-null int64
Penalty goals 16 non-null int64
Penalties not scored 16 non-null int64
Headed goals 16 non-null int64
Passes 16 non-null int64
Passes completed 16 non-null int64
Passing Accuracy 16 non-null object
Touches 16 non-null int64
Crosses 16 non-null int64
Dribbles 16 non-null int64
Corners Taken 16 non-null int64
Tackles 16 non-null int64
Clearances 16 non-null int64
Interceptions 16 non-null int64
Clearances off line 15 non-null float64
Clean Sheets 16 non-null int64
Blocks 16 non-null int64
Goals conceded 16 non-null int64
Saves made 16 non-null int64
Saves-to-shots ratio 16 non-null object
Fouls Won 16 non-null int64
Fouls Conceded 16 non-null int64
Offsides 16 non-null int64
Yellow Cards 16 non-null int64
Red Cards 16 non-null int64
Subs on 16 non-null int64
Subs off 16 non-null int64
Players Used 16 non-null int64
dtypes: float64(1), int64(29), object(5)
memory usage: 4.5+ KB

步骤7 将数据集中的列Team, Yellow Cards和Red Cards单独存为一个名叫discipline的数据框

discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']]
discipline

输出:

步骤8 对数据框discipline按照先Red Cards再Yellow Cards进行排序

discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False)

输出:

步骤9 计算每个球队拿到的黄牌数的平均值

round(discipline['Yellow Cards'].mean())

输出:

7.0

步骤10 找到进球数Goals超过6的球队数据

euro12[euro12.Goals > 6]

输出:

步骤11 选取以字母G开头或以e结尾的球队数据

# euro12[euro12.Team.str.startswith('G')]
euro12[euro12.Team.str.endswith('e')] # 以字母e结束的球队

输出:

步骤12 选取前7列

euro12.iloc[: , 0:7]

输出:

步骤13 选取除了最后3列之外的全部列

euro12.iloc[: , :-3]

输出:

步骤14 找到英格兰(England)、意大利(Italy)和俄罗斯(Russia)的命中率(Shooting Accuracy)

euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']]

输出:

参考链接:

1、http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook

2、https://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation/

3、https://github.com/guipsamora/pandas_exercises

pandas练习(二)------ 数据过滤与排序的更多相关文章

  1. Vue 基本列表 && 数据过滤与排序

    1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="UTF-8" /> 5 & ...

  2. pandas之DateFrame 数据过滤+遍历行+读写csv-txt-excel

    # XLS转CSV df = pd.read_excel(r'列表.xls') df2 = pd.DataFrame()df2 = df2.append(list(df['列名']), ignore_ ...

  3. Oracle学习(二):过滤和排序

    1.知识点:能够对比以下的录屏进行阅读 SQL> --字符串大写和小写敏感 SQL> --查询名叫KING的员工信息 SQL> select * 2 from emp 3 where ...

  4. python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import n ...

  5. [数据清洗]- Pandas 清洗“脏”数据(二)

    概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的 ...

  6. mysql必知必会(四、检索数据,五、排序检索数据,六、过滤数据,七、数据过滤)

    四.select语句 1.检索单个列 select prod_name from products; 2.检索多个列 select prod_name, prod_price from product ...

  7. [数据清洗]-使用 Pandas 清洗“脏”数据

    概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...

  8. [数据清洗]- Pandas 清洗“脏”数据(三)

    预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) D ...

  9. Oracle01——基本查询、过滤和排序、单行函数、多行函数和多表查询

    作者: kent鹏 转载请注明出处: http://www.cnblogs.com/xieyupeng/p/7272236.html Oracle的集群 Oracle的体系结构 SQL> --当 ...

随机推荐

  1. GPU对数据的操作不可累加

    我想当然的认为GPU处理数据时可以共同访问内存,所以对数据的操作是累加的. 事实证明:虽然GPU多个核可以访问同一块内存,但彼此之间没有依赖关系,它们对这块内存的作用无法累加. 先看代码: #incl ...

  2. postgresql----文本搜索类型和检索函数

    postgresql提供两种数据类型用于支持全文检索:tsvector类型产生一个文档(以优化全文检索形式)和tsquery类型用于查询检索. tsvector的值是一个无重复的lexemes排序列表 ...

  3. C++基础知识之动态库静态库

    一. 静态库与动态库 库(library),一般是一种可执行的二进制格式,被操作系统载入内存执行. 我们通常把一些公用函数制作成函数库,供其它程序使用.函数库分为静态库和动态库 静态库和动态库区别: ...

  4. 计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]

    题目链接:https://nanti.jisuanke.com/t/30990 Alice, a student of grade 6, is thinking about an Olympian M ...

  5. ZOJ 3985 - String of CCPC - [字符串处理]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3985 题意: 给出一个长度为n的字符串,全部由'C'和'P'组成 ...

  6. Pandas的index属性

    我们在统计数据的长度或者个数,不用统计去专门获取数值,而是用index这个数据获取即可,DataFrame的index直接就是最前面的索引号,如果要统计列的个数,使用DataFrame.colums获 ...

  7. Oracle备份恢复之无备份情况下恢复undo表空间

    UNDO表空间存储着DML操作数据块的前镜像数据,在数据回滚,一致性读,闪回操作,实例恢复的时候都可能用到UNDO表空间中的数据.如果在生产过程中丢失或破坏了UNDO表空间,可能导致某些事务无法回滚, ...

  8. linux:echo命令示例

    echo命令:用于字符串的输出  $echo string 1.打印普通字符串 $echo "hello kumata" hello kumata #这里的双引号完全可以省略,以下 ...

  9. C# ArcEngine TOCControl上实现右键

    第一种方法:使用contextMenuStrip控件 1.新建一个窗体AttributeTable,并定义一个全局变量mLayer,让主窗体里面的axMapControl1的layer传进来,从而获取 ...

  10. 教程 | 如何使用纯NumPy代码从头实现简单的卷积神经网络

    Building Convolutional Neural Network using NumPy from Scratch https://www.linkedin.com/pulse/buildi ...