1、boosting

Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数。他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器。

在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法。

1.1 bootstrapping方法的主要过程

i)重复地从一个样本集合D中采样n个样本

ii)针对每次采样的子样本集,进行统计学习,获得假设Hi

iii)将若干个假设进行组合,形成最终的假设Hfinal

iv)将最终的假设用于具体的分类任务

1.2 bagging方法的主要过程

i)训练分类器 从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci

ii)分类器进行投票,最终的结果是分类器投票的优胜结果

但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。

Schapire还提出了一种早期的boosting算法,其主要过程如下:

i)从样本整体集合D中,不放回的随机抽样n1 < n个样本,得到集合 D1 训练弱分类器C1

ii)从样本整体集合D中,抽取 n2 < n个样本,其中合并进一半被C1 分类错误的样本。得到样本集合 D2 训练弱分类器C2

iii)抽取D样本集合中,C1C2 分类不一致样本,组成D3 训练弱分类器C3

iv)用三个分类器做投票,得到最后分类结果

到了1995年,Freund and schapire提出了现在的adaboost算法。

2、adaboost

主要框架可以描述为:

i)循环迭代多次,更新样本分布,寻找当前分布下的最优弱分类器,计算弱分类器误差率

ii)聚合多次训练的弱分类器

现在,boost算法有了很大的发展,出现了很多的其他boost算法,例如:logitboost算法,gentleboost算法等。

3、adaboost的收敛性证明

整个证明的核心是:

,其中表示样本总数,表示弱分类器的总数,为每一级弱分类器的错误率。

证明过程:

如果,故。所以得到上式子。

至此,看到AdaBoost的错误率上限,接下来的目标就是使这个上限尽可能小!

在原始AdaBoost算法中h值域是{-1,1},问题是怎么找到最佳的

对于原始的AdaBoost,前文讨论过其h是“定死”的,失去了“讨价还价”的余地,而在Real AdaBoost不在“定死”。

推导过程ppt下载

参考:http://blog.163.com/f_rock/blog/static/1947961312011102810164354/

4、gentle adaboost

参考:http://blog.csdn.net/wsj998689aa/article/details/42652827

boosting、adaboost的更多相关文章

  1. [机器学习]集成学习--bagging、boosting、stacking

    集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...

  2. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  3. 决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/li ...

  4. Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  5. 【SVM、决策树、adaboost、LR对比】

    一.SVM 1.应用场景: 文本和图像分类. 2.优点: 分类效果好:有效处理高维空间的数据:无局部最小值问题:不易过拟合(模型中含有L2正则项): 3.缺点: 样本数据量较大需要较长训练时间:噪声不 ...

  6. Boosting and AdaBoost

    Boosting是一种从一些弱分类器中创建一个强分类器的集成技术(提升算法). 它先由训练数据构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误.不断添加模型,直到训练集完美预测或已经添加到数 ...

  7. bagging,random forest,boosting(adaboost、GBDT),XGBoost小结

    Bagging 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping(有放回)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行 ...

  8. 弱分类器的进化--Bagging、Boosting、Stacking

    一般来说集成学习可以分为三大类: 用于减少方差的bagging 用于减少偏差的boosting 用于提升预测结果的stacking 一.Bagging(1996) 1.随机森林(1996) RF = ...

  9. 机器学习算法( 七、AdaBoost元算法)

    一.概述 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm)背后的思路.元算法是对其他算法进行组合的一种方 ...

随机推荐

  1. SDWebImage源码解读 之 NSData+ImageContentType

    第一篇 前言 从今天开始,我将开启一段源码解读的旅途了.在这里先暂时不透露具体解读的源码到底是哪些?因为也可能随着解读的进行会更改计划.但能够肯定的是,这一系列之中肯定会有Swift版本的代码. 说说 ...

  2. 云瓣影音网站&&微信端(已开源)

    随着该项目的发布到线上(小打小闹),即将又要开启另一段崭新的旅程.强迫自己停下来写写所学所得,个人认为总结和分享是一种很棒的学习方式.那让我们先来瞧瞧项目长的什么样.如果着急要源码的朋友,可以下拉到最 ...

  3. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  4. Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误——SHH框架

    SHH框架工程,Tomcat启动报错org.springframework.web.context.ContextLoaderListener类配置错误 1.查看配置文件web.xml中是否配置.or ...

  5. Java类访问权限修饰符

    一.概要 通过了解Java4种修饰符访问权限,能够进一步完善程序类,合理规划权限的范围,这样才能减少漏洞.提高安全性.具备表达力便于使用. 二.权限表 修饰符 同一个类 同一个包 不同包的子类 不同包 ...

  6. BPM费控管理解决方案分享

    一.方案概述费用是除经营成本外企业的最主要支出,费用管理是财务管理的核心之一,加强企业内控管理如:费用申请.费用报销.费用分摊.费用审批.费用控制和费用支付等,通过科学有效的管理方法规范企业费用管理, ...

  7. 【干货分享】流程DEMO-付款申请单

    流程名: 付款申请单  业务描述: 包括每月固定开支.固定资产付款.办公用品付款.工资发放.个人所得税缴纳.营业税缴纳.公积金.社保缴纳和已签订合同的按期付款,最后是出纳付款,出纳核对发票. 流程发起 ...

  8. Android Studio开发RecyclerView遇到的各种问题以及解决(二)

    开发RecyclerView时候需要导入别人的例子,我的是从github导入的,下载下github的压缩包之后解压看你要导入的文件是priject还是Module.(一般有app文件夹的大部分是pro ...

  9. SQLServer2005创建定时作业任务

    SQLServer定时作业任务:即数据库自动按照定时执行的作业任务,具有周期性不需要人工干预的特点 创建步骤:(使用最高权限的账户登录--sa) 一.启动SQL Server代理(SQL Server ...

  10. Oracle创建表空间

    1.创建表空间 导出Oracle数据的指令:/orcl file=C:\jds.dmp owner=jds 导入Oracle数据的指令:imp zcl:/orcl file=C:\jds.dmp fu ...