https://www.desmos.com/calculator/v1nugr08y5

https://mathvault.ca/euler-formula/

https://www.britannica.com/science/Eulers-formula

复数域的:

  • 一切代数恒等式 仍像 实数域的 成立;
  • 不等式不能定义像实数域比较大小的不等式.

    事实上, 如果复数域可以比较大小,那么必然推导出\(-1 > 0\):

    \(\begin{array}{ccl}
    hypothesis\ i > 0 &\ \Rightarrow\ & (i)^2 > 0 &\Rightarrow \ (+i)^2=-1 > 0 &\ \Rightarrow \ contradiction \\
    hypothesis\ i < 0 &\ \Rightarrow\ & -i > 0 &\Rightarrow \ (-i)^2=-1 > 0 &\ \Rightarrow \ contradiction \\
    \end{array}\)

    so\(\ ONLY\) real number field \(R\) has it's \(inequalities\).

De Moivre's Formula

\(Abraham\ de\ Moivre,\ French\ mathematician\)

  • \(\large (r_{1}\ cis\ \theta_{1})^n =r^{n}\ cis\ n*\theta\)

    OR \(\large [\ r(\cos{\theta}+i*{\sin{\theta}})\ ]^{n} = r^{n}[\ \cos{(n*\theta)} + i*\sin{(n*\theta)}\ ]\)
  • It lets us multiply a complex number by itself (as many times as we want) in one go!

    Let's learn about it, and also discover a much neater way to write it.
  • Thanks to Abraham de Moivre so we have this useful formula.

Euler's Formula

https://mathvault.ca/euler-formula/, \(Leonhard\ Euler,\ Swiss\ mathematician\)

We can also create de Moivre's Formula with some help from Leonhard Euler!

  • Euler's Formula for complex numbers says:

    \(\large f(\theta) = e^{i\theta} = 1\ cis\ \theta = \cos{\theta} + i \cdot \sin{\theta}\)

    \(\large f'(\theta)=\frac{d(e^{i\theta})}{d(\theta)} = i * e^{i\theta}\)

    \(\large f'(\theta)= i * f(\theta)\), compares \(\large f'(\theta)\) to \(\large f(\theta)\) at arbitrary polar form point \(\large (1,\theta)\):

    • only the \(\large angle\) in radians rotated \(\large \frac{\pi}{2}\) counterclockwise from \(\large \theta\), and become \(\large (\theta + \frac{\pi}{2})\)
    • and the \(\large magnitude\) remains.

    \(\large \begin{array}{ccl} & \because & f(\theta) &=& e^{i\theta} &=& \cos{\theta} + i \cdot \sin{\theta} \\
    & & f'(\theta) &=& i * f(\theta) &=& i*e^{i\theta}\end{array}\)

    \(\large \begin{array}{ccl} & \therefore & & & & & & & & & \\
    & & f(\theta) &=& e^{i*\theta} & & & & & && \\
    & & f(1) &=& e^{i*1} &=& e^i \ ,&\ f'(1) &=& i * e^{i} &=& i * e^{i} \\
    & & f(0) &=& e^{i*0} &=& 1 \ ,&\ f'(0) &=& i * 1 &=& i \\
    & & f(\frac{\pi}{2}) &=& e^{i*\frac{\pi}{2}} &=& i \ ,&\ f'(\frac{\pi}{2}) &=& i * i &=& -1 \\
    & & f(\pi) &=& e^{i*\pi} &=& -1 \ ,&\ \ f'({\pi}) &=& i * -1 &=& -i \\
    & & f(\frac{3\pi}{2}) &=& e^{i*\frac{3\pi}{2}} &=& -i \ ,&\ f'(\frac{3\pi}{2}) &=& i * -i &=& 1 \end{array}\)

  • Euler’s Identity

    Euler’s identity is the most beautiful equation in mathematics. It is written as:

    \(\large e^{i\pi} + 1 = 0\)

    where it showcases five of the most important constants in mathematics. These are:

    • The \(0\): additive identity
    • The \(1\): unity
    • The \(\large \pi\): Pi constant (ratio of a circle’s circumference to its diameter)
    • The \(\large e\): base of natural logarithm
    • The \(\large i\): imaginary unit

    Among these:

    • three types of numbers are represented: \(\{integers\}\), \(\{irrational\ numbers\}\) and \(\{imaginary\ numbers\}\).
    • Three of the basic mathematical operations are also represented: \(\large addition\), \(\large multiplication\) and \(\large exponentiation\).

    We obtain Euler’s identity:

    • by starting with Euler’s formula \(\large e^{i\theta} = \cos{\theta} + i\cdot\sin{\theta}\)
    • and by setting \(\large \theta = \pi\) and sending the subsequent \(-1\) to the left-hand side.
    • The intermediate form \(\large e^{i \pi} = -1\) is common in the context of trigonometric unit circle in the complex plane:

      it corresponds to the point on the unit circle whose angle with respect to the positive real axis is \(\pi\).

Complex Numbers:

  • The "\(unit\ imaginary\ number\) when squared equals −1:

    $ i^2 = -1\ \ \Rightarrow\ \ i = \pm \sqrt{-1}$

  • Special case:

    • $\large i = \cos{\frac{\pi}{2}} + i*\sin{\frac{\pi}{2}} $
    • $ x = r\ cis\ \theta = r(\cos{\theta}+i*{\sin{\theta}}),\ \forall\ z \in C,\ r \in R,\ \theta \in [0,2\pi)$
    • $ x * i = r\ cis \ (\theta +\frac{\pi}{2}) = i * r(\cos{\theta}+i*{\sin{\theta}}) = r * [ \cos{(\theta + \frac{\pi}{2})} + i \sin{(\theta + \frac{\pi}{2})} ] $

      ONLY the \(\large angle\ in\ radians\) become \((\theta + \frac{\pi}{2})\), and the \(\large magnitude\) remains.
    • \(\large \forall\ x \in R, \ f(x) = e^{kx}, we\ have\ f'(x)=\frac{d(e^{kx})}{d(x)} = k * e^{kx}, since\ (e^x)' = e^{x}\)
    • \(\large \forall\ \theta \in C, \ f(\theta) = e^{i\theta}, we\ have\ f'(\theta)=\frac{d(e^{i\theta})}{d(\theta)} = i*e^{i\theta}\)
  • What is a Complex number?

    a Complex Number is a combination of a Real Number and Imaginary Number;

    • $ x = a + b*i,\ Cartesian\ Form$, in Cartesian coordinates.

    • $ x = r(\cos{\theta}+i*{\sin{\theta}}),\ Polar\ Form$, in Polar coordinates.

      In fact, a common way to write a complex number in \(Polar form\) is

      \(a + b*i = r(\cos\theta + i*\sin\theta)\)

      And "\(\cos{\theta} + i*\sin{\theta}\)" is often shortened to "\(cis\ θ\)" OR "\(\angle \theta\)", so:

      \(a + b*i = r\ cis\ \theta = r \angle \theta\)

      where: \(cis\ \theta\) OR \(\angle \theta\) is just shorthand for \(\cos\theta + i*\sin\theta\)

    • conversions:

      • From \(Cartesian\) to \(Polar\)( use \(3 + 4i\) as a example):

        $ r = \sqrt{a^{2} + b^{2}} = \sqrt{3^{2} + 4^{2}} = \sqrt{25} = 5$

        $ \theta = \arctan{(b/a)} = \arctan{(4/3)} = 0.9273 (to\ 4\ decimals)$
         import math as m
        a, b = 3, 4
        rho = m.sqrt(m.pow(a, 2) + m.pow(b, 2))
        theta = m.atan(b/a);
      • From \(Polar\) to \(Cartesian\):

        $ a = r * \cos\theta = 5.0 * \cos{(0.92729..)} = 3.0,\ (at\ perfect\ accuracy)$

        $ b = r * \sin\theta = 5.0 * \sin{(0.92729...)} = 4.0,\ (at\ perfect\ accuracy)$
         import math as m
        rho, theta = 5.0, 0.9272952180016122
        a = rho * m.cos(theta)
        b = rho * m.sin(theta)
    • In other words the complex number \(3 + 4i\) can also be shown as distance 5 and angle 0.927 radians.

      \(Cartesian\ Form\) \(Polar\ Form\)
  • 两个复数乘积结果: 模相乘(模等于两者模相乘), 角相加(弧角等于两者弧角相加)

    \(极坐标\) 表示:

    \(\large \begin{array}{ccl}
    z_{1} &=& r_{1} \angle \theta_{1}\ , \\
    z_{2} &=& r_{2} \angle \theta_{2} \\
    z_{1}*z_{2} &=& r_{1}*r_{2} \angle (\theta_{1}+\theta_{2}) \\
    OR \\
    z_{1} &=& r_{1}(\cos{\theta_{1}}+i*{\sin{\theta_{1}}}) \\
    z_{2} &=& r_2 (\cos{\theta_{2}}+i*\sin{\theta_{2}}) \\
    z_{1}*z_{2} &=& r_{1} * r_2 [\cos{(\theta_{1}+\theta_{2})} + i*\sin{(\theta_{1}+\theta_{2})} ] \end{array}\)

Complex Numbers in Exponential Form

  • Cartesian Form: At this point, we already know that a complex number \(z\) can be expressed in Cartesian coordinates as \(x + iy\), where \(x\) and \(y\) are respectively the \(real\ part\) and the \(imaginary\ part\) of \(z\).
  • Polar Form: Indeed, the same complex number can also be expressed in Polar coordinates as \(r(\cos \theta + i \sin \theta)\), where \(r\) is the \(magnitude\) of its distance to the origin, and \(\theta\) is its \(angle\ in\ radians\) with respect to the positive real axis.
  • Exponential Form: it does not end there: thanks to \(Euler’s formula\), every complex number can now be expressed as a \(complex\ exponential\) as follows:

    \(z = r(\cos \theta + i \sin \theta) = r e^{i \theta}\)

    where \(r\) and \(\theta\) are the same numbers as before.

    To go from \((x, y)\) to \((r, \theta)\), we use the formulas \(\begin{align*} r & = \sqrt{x^2 + y^2} \\[4px] \theta & = \operatorname{atan2}(y, x) \end{align*}\),

    where \(\operatorname{atan2}(y, x)\) is the two-argument arctangent function with \(\operatorname{atan2}(y, x) = \arctan (\frac{y}{x})\) whenever \(x>0\).

    Conversely, to go from \((r, \theta)\) to \((x, y)\), we use the formulas: \(\begin{align*} x & = r \cos \theta \\[4px] y & = r \sin \theta \end{align*}\)
  • The \(exponential\ form\ of\ complex\ numbers\) also makes multiplying complex numbers much easier — much like the same way rectangular coordinates make addition easier.

    For example, given two complex numbers \(z_1 = r_1 e^{i \theta_1}\) and \(z_2 = r_2 e^{i \theta_2}\),

    we can now multiply them together as follows:

    \(\begin{align*} z_1 z_2 & = r_1 e^{i \theta_1} \cdot r_2 e^{i \theta_2} \\ & = r_1 r_2 e^{i(\theta_1 + \theta_2)} \end{align*}\)

    In the same spirit, we can also divide the same two numbers as follows:

    \(\begin{align*} \frac{z1}{z2} & = \frac{r_1 e^{i \theta_1}}{r_2 e^{i \theta_2}} \\ & = \frac{r_1}{r_2} e^{i (\theta_{1}-\theta_2)} \end{align*}\)

Note

  • To be sure, these do presuppose properties of exponent such as \(e^{z_1+z_2}=e^{z_1} e^{z_2}\) and \(e^{-z_1} = \frac{1}{e^{z_1}}\), which for example can be established by expanding the power series of \(e^{z_1}\), \(e^{-z_1}\) and \(e^{z_2}\).
  • Had we used the \(rectangular\ notation\) \(x + iy\) instead, the same division would have required multiplying by the complex conjugate in the \(numerator\) and \(denominator\).

    With the \(polar\ coordinates\), the situation would have been the same (save perhaps worse).
  • If anything, the \(exponential form\) sure makes it easier to see that:
    • multiplying two complex numbers is really the same as:

      multiplying magnitudes and adding angles,
    • dividing two complex numbers is really the same as:

      dividing magnitudes and subtracting angles.

the most remarkable formula in mathematics

Indeed, whether it’s \(Euler’s\ identity\) or \(complex\ logarithm\),

\(Euler’s\ formula\) seems to leave no stone unturned whenever expressions such \(\sin\), \(i\) and \(e\) are involved.

It’s a powerful tool whose mastery can be tremendously rewarding,

and for that reason is a rightful candidate of “the most remarkable formula in mathematics”.

Description Statement
Euler’s formula \(e^{ix} = \cos x + i \sin x\)
Euler’s identity \(e^{i \pi} + 1 = 0\)
Complex number (exponential form) \(z = r e^{i \theta}\)
Complex exponential \(e^{x+iy} = e^x (\cos y + i \sin y)\)
Sine (exponential form) \(\sin x = \dfrac{e^{ix}-e^{-ix}}{2i}\)
Cosine (exponential form) \(\cos x = \dfrac{e^{ix} + e^{-ix}}{2}\)
Tangent (exponential form) \(\tan x = \dfrac{e^{ix}-e^{-ix}}{i(e^{ix} + e^{-ix})}\)
Hyperbolic sine (exponential form) \(\sinh z = \dfrac{\sin iz}{i}\)
Hyperbolic cosine (exponential form) \(\cosh z = \cos iz\)
Hyperbolic tangent (exponential form) \(\tanh z = \dfrac{\tan iz}{i}\)
Complex logarithm \(\ln z = \ln |z| + i\phi\)
General complex exponential \(a^z = e^{z \ln a}\)
De Moivre’s theorem \((\cos x + i \sin x)^n = \cos nx + i \sin nx\)
Additive identity of sine \(\sin (x+y) = \sin x \cos y + \cos x \sin y\)
Additive identity of cosine \(\cos (x+y) = \cos x \cos y-\sin x \sin y\)

SciTech-Math-Complex Analysis复分析: Complex复数 + De Moivre's Formula:帝魔服公式 + Euler's Formula:欧拉公式的更多相关文章

  1. Number 强制类型转换 int 强制转换整型 float 强制转换浮点型 complex 强制转换成复数 bool 强制转换成布尔类型,结果只有两种,要么True 要么 False """bool 可以转换所有的数据类型 everything"""

    # ###Number 强制类型转换 var1 = 5 var2 = 4.85 var3 = True var3_2 = False var4 = 3+9j var5 = "888777&q ...

  2. De Moivre–Laplace theorem 掷硬币

    De Moivre–Laplace theorem - Wikipedia https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theore ...

  3. De Moivre–Laplace theorem

    网址:https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem De Moivre–Laplace 中心极限定理的证明.主要用到s ...

  4. A brief introduction to complex analysis

    \(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (compl ...

  5. [Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane

    Exercises 3.2 21. (a). For $\omega = sinz$, what is the image of the semi-infinite strip $S_1 = \{x+ ...

  6. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  7. Number (float bool complex)浮点型、bool 布尔型 True、False 、complex 复数类型

    # Number (float bool complex) # ### float 浮点型 就是小数 # (1) 表达形式一 floatvar = 3.14 print(floatvar) #获取类型 ...

  8. 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl

    因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...

  9. 采用C/C++语言如何实现复数抽象数据类型Complex

    记录一下! 采用C/C++语言如何实现复数抽象数据类型Complex #include <stdio.h> typedef struct Complex { double e1; // 实 ...

  10. 侯捷老师C++大系之C++面向对象开发:(一)不带指针的类:Complex复数类的实现过程

    一.笔记1.C++编程简介 2.头文件与类的声明 防卫式声明#ifndef __COMPLEX__#define __COMPLEX__ …… #endif头文件的布局模板简介template< ...

随机推荐

  1. CentOS7修复OpenSSH漏洞升级到OpenSSH 9.8 RPM一键更新包

    OpenSSH是SSH(Secure Shell)协议的开源实现,它支持在两个主机之间提供安全的加密通信,广泛用于Linux等系统,通常用于安全远程登录.远程文件传输和其它网络服务. 2024年7月1 ...

  2. 参考示例之“复制对象|拷贝对象|BeanUtils工具类学习”

    // 设置需要拷贝的字段 Set<String> targetSet = new HashSet<>(); targetSet.addAll(Arrays .asList(&q ...

  3. QuickSort之C#实现

    /// <summary> /// 快速排序中的切分 /// lIndex已经是基准值,i记录基准值的大小值的边界,j记录目前遍历的边界: /// i值必须从lIndex+1开始,因为基准 ...

  4. 在windows server中安装docker

    windows server 建议选择win10系统. 首先要下载wsl2: 主要参考微软官方文档:https://learn.microsoft.com/en-us/windows/wsl/inst ...

  5. Data wrangling:Join,Combine,and Reshape,in Pandas

    Data wrangling:Join,Combine,and Reshape,in Pandas import pandas as pd import numpy as np Hierarchica ...

  6. C++ 智能指针的删除器

    为什么要设置删除器 C++11 加入STL的 shared_ptr 和 unique_ptr,已经是我们编码的常客了.用的多自然就会了解到它们的删除器,比如很多C语言库(GDAL, GLFW, lib ...

  7. CentOS、Ubuntu安装jdk11方法

    CentOS: sudo yum install java-11-openjdk -y Ubuntu sudo apt-get install openjdk-11-jre -y 检查版本: java ...

  8. MYSQL优化学习总结

    mysql学习小结---索引的使用及优化 1. 索引那些事 1.1 复合索引 复合索引是指:包含一个或者多个列的索引.但复合索引的触发是有条件的. 假设我们现在有一个复合索引a,a中包含了三个列(id ...

  9. 2023人形全能赛openmv巡线代码

    openmv import sensor, image, time, math from pyb import LED, millis, UART class RobotControl: flag = ...

  10. MySQL 情节:SQL 语句的表演

    本文由 ChatMoney团队出品 第一幕:解析与优化 - "翻译官与谋士" SQL 解析器是第一个上场的角色,任务就是把 SQL 请求翻译成 MySQL 能听懂的语言.就像你点餐 ...