https://www.desmos.com/calculator/v1nugr08y5

https://mathvault.ca/euler-formula/

https://www.britannica.com/science/Eulers-formula

复数域的:

  • 一切代数恒等式 仍像 实数域的 成立;
  • 不等式不能定义像实数域比较大小的不等式.

    事实上, 如果复数域可以比较大小,那么必然推导出\(-1 > 0\):

    \(\begin{array}{ccl}
    hypothesis\ i > 0 &\ \Rightarrow\ & (i)^2 > 0 &\Rightarrow \ (+i)^2=-1 > 0 &\ \Rightarrow \ contradiction \\
    hypothesis\ i < 0 &\ \Rightarrow\ & -i > 0 &\Rightarrow \ (-i)^2=-1 > 0 &\ \Rightarrow \ contradiction \\
    \end{array}\)

    so\(\ ONLY\) real number field \(R\) has it's \(inequalities\).

De Moivre's Formula

\(Abraham\ de\ Moivre,\ French\ mathematician\)

  • \(\large (r_{1}\ cis\ \theta_{1})^n =r^{n}\ cis\ n*\theta\)

    OR \(\large [\ r(\cos{\theta}+i*{\sin{\theta}})\ ]^{n} = r^{n}[\ \cos{(n*\theta)} + i*\sin{(n*\theta)}\ ]\)
  • It lets us multiply a complex number by itself (as many times as we want) in one go!

    Let's learn about it, and also discover a much neater way to write it.
  • Thanks to Abraham de Moivre so we have this useful formula.

Euler's Formula

https://mathvault.ca/euler-formula/, \(Leonhard\ Euler,\ Swiss\ mathematician\)

We can also create de Moivre's Formula with some help from Leonhard Euler!

  • Euler's Formula for complex numbers says:

    \(\large f(\theta) = e^{i\theta} = 1\ cis\ \theta = \cos{\theta} + i \cdot \sin{\theta}\)

    \(\large f'(\theta)=\frac{d(e^{i\theta})}{d(\theta)} = i * e^{i\theta}\)

    \(\large f'(\theta)= i * f(\theta)\), compares \(\large f'(\theta)\) to \(\large f(\theta)\) at arbitrary polar form point \(\large (1,\theta)\):

    • only the \(\large angle\) in radians rotated \(\large \frac{\pi}{2}\) counterclockwise from \(\large \theta\), and become \(\large (\theta + \frac{\pi}{2})\)
    • and the \(\large magnitude\) remains.

    \(\large \begin{array}{ccl} & \because & f(\theta) &=& e^{i\theta} &=& \cos{\theta} + i \cdot \sin{\theta} \\
    & & f'(\theta) &=& i * f(\theta) &=& i*e^{i\theta}\end{array}\)

    \(\large \begin{array}{ccl} & \therefore & & & & & & & & & \\
    & & f(\theta) &=& e^{i*\theta} & & & & & && \\
    & & f(1) &=& e^{i*1} &=& e^i \ ,&\ f'(1) &=& i * e^{i} &=& i * e^{i} \\
    & & f(0) &=& e^{i*0} &=& 1 \ ,&\ f'(0) &=& i * 1 &=& i \\
    & & f(\frac{\pi}{2}) &=& e^{i*\frac{\pi}{2}} &=& i \ ,&\ f'(\frac{\pi}{2}) &=& i * i &=& -1 \\
    & & f(\pi) &=& e^{i*\pi} &=& -1 \ ,&\ \ f'({\pi}) &=& i * -1 &=& -i \\
    & & f(\frac{3\pi}{2}) &=& e^{i*\frac{3\pi}{2}} &=& -i \ ,&\ f'(\frac{3\pi}{2}) &=& i * -i &=& 1 \end{array}\)

  • Euler’s Identity

    Euler’s identity is the most beautiful equation in mathematics. It is written as:

    \(\large e^{i\pi} + 1 = 0\)

    where it showcases five of the most important constants in mathematics. These are:

    • The \(0\): additive identity
    • The \(1\): unity
    • The \(\large \pi\): Pi constant (ratio of a circle’s circumference to its diameter)
    • The \(\large e\): base of natural logarithm
    • The \(\large i\): imaginary unit

    Among these:

    • three types of numbers are represented: \(\{integers\}\), \(\{irrational\ numbers\}\) and \(\{imaginary\ numbers\}\).
    • Three of the basic mathematical operations are also represented: \(\large addition\), \(\large multiplication\) and \(\large exponentiation\).

    We obtain Euler’s identity:

    • by starting with Euler’s formula \(\large e^{i\theta} = \cos{\theta} + i\cdot\sin{\theta}\)
    • and by setting \(\large \theta = \pi\) and sending the subsequent \(-1\) to the left-hand side.
    • The intermediate form \(\large e^{i \pi} = -1\) is common in the context of trigonometric unit circle in the complex plane:

      it corresponds to the point on the unit circle whose angle with respect to the positive real axis is \(\pi\).

Complex Numbers:

  • The "\(unit\ imaginary\ number\) when squared equals −1:

    $ i^2 = -1\ \ \Rightarrow\ \ i = \pm \sqrt{-1}$

  • Special case:

    • $\large i = \cos{\frac{\pi}{2}} + i*\sin{\frac{\pi}{2}} $
    • $ x = r\ cis\ \theta = r(\cos{\theta}+i*{\sin{\theta}}),\ \forall\ z \in C,\ r \in R,\ \theta \in [0,2\pi)$
    • $ x * i = r\ cis \ (\theta +\frac{\pi}{2}) = i * r(\cos{\theta}+i*{\sin{\theta}}) = r * [ \cos{(\theta + \frac{\pi}{2})} + i \sin{(\theta + \frac{\pi}{2})} ] $

      ONLY the \(\large angle\ in\ radians\) become \((\theta + \frac{\pi}{2})\), and the \(\large magnitude\) remains.
    • \(\large \forall\ x \in R, \ f(x) = e^{kx}, we\ have\ f'(x)=\frac{d(e^{kx})}{d(x)} = k * e^{kx}, since\ (e^x)' = e^{x}\)
    • \(\large \forall\ \theta \in C, \ f(\theta) = e^{i\theta}, we\ have\ f'(\theta)=\frac{d(e^{i\theta})}{d(\theta)} = i*e^{i\theta}\)
  • What is a Complex number?

    a Complex Number is a combination of a Real Number and Imaginary Number;

    • $ x = a + b*i,\ Cartesian\ Form$, in Cartesian coordinates.

    • $ x = r(\cos{\theta}+i*{\sin{\theta}}),\ Polar\ Form$, in Polar coordinates.

      In fact, a common way to write a complex number in \(Polar form\) is

      \(a + b*i = r(\cos\theta + i*\sin\theta)\)

      And "\(\cos{\theta} + i*\sin{\theta}\)" is often shortened to "\(cis\ θ\)" OR "\(\angle \theta\)", so:

      \(a + b*i = r\ cis\ \theta = r \angle \theta\)

      where: \(cis\ \theta\) OR \(\angle \theta\) is just shorthand for \(\cos\theta + i*\sin\theta\)

    • conversions:

      • From \(Cartesian\) to \(Polar\)( use \(3 + 4i\) as a example):

        $ r = \sqrt{a^{2} + b^{2}} = \sqrt{3^{2} + 4^{2}} = \sqrt{25} = 5$

        $ \theta = \arctan{(b/a)} = \arctan{(4/3)} = 0.9273 (to\ 4\ decimals)$
         import math as m
        a, b = 3, 4
        rho = m.sqrt(m.pow(a, 2) + m.pow(b, 2))
        theta = m.atan(b/a);
      • From \(Polar\) to \(Cartesian\):

        $ a = r * \cos\theta = 5.0 * \cos{(0.92729..)} = 3.0,\ (at\ perfect\ accuracy)$

        $ b = r * \sin\theta = 5.0 * \sin{(0.92729...)} = 4.0,\ (at\ perfect\ accuracy)$
         import math as m
        rho, theta = 5.0, 0.9272952180016122
        a = rho * m.cos(theta)
        b = rho * m.sin(theta)
    • In other words the complex number \(3 + 4i\) can also be shown as distance 5 and angle 0.927 radians.

      \(Cartesian\ Form\) \(Polar\ Form\)
  • 两个复数乘积结果: 模相乘(模等于两者模相乘), 角相加(弧角等于两者弧角相加)

    \(极坐标\) 表示:

    \(\large \begin{array}{ccl}
    z_{1} &=& r_{1} \angle \theta_{1}\ , \\
    z_{2} &=& r_{2} \angle \theta_{2} \\
    z_{1}*z_{2} &=& r_{1}*r_{2} \angle (\theta_{1}+\theta_{2}) \\
    OR \\
    z_{1} &=& r_{1}(\cos{\theta_{1}}+i*{\sin{\theta_{1}}}) \\
    z_{2} &=& r_2 (\cos{\theta_{2}}+i*\sin{\theta_{2}}) \\
    z_{1}*z_{2} &=& r_{1} * r_2 [\cos{(\theta_{1}+\theta_{2})} + i*\sin{(\theta_{1}+\theta_{2})} ] \end{array}\)

Complex Numbers in Exponential Form

  • Cartesian Form: At this point, we already know that a complex number \(z\) can be expressed in Cartesian coordinates as \(x + iy\), where \(x\) and \(y\) are respectively the \(real\ part\) and the \(imaginary\ part\) of \(z\).
  • Polar Form: Indeed, the same complex number can also be expressed in Polar coordinates as \(r(\cos \theta + i \sin \theta)\), where \(r\) is the \(magnitude\) of its distance to the origin, and \(\theta\) is its \(angle\ in\ radians\) with respect to the positive real axis.
  • Exponential Form: it does not end there: thanks to \(Euler’s formula\), every complex number can now be expressed as a \(complex\ exponential\) as follows:

    \(z = r(\cos \theta + i \sin \theta) = r e^{i \theta}\)

    where \(r\) and \(\theta\) are the same numbers as before.

    To go from \((x, y)\) to \((r, \theta)\), we use the formulas \(\begin{align*} r & = \sqrt{x^2 + y^2} \\[4px] \theta & = \operatorname{atan2}(y, x) \end{align*}\),

    where \(\operatorname{atan2}(y, x)\) is the two-argument arctangent function with \(\operatorname{atan2}(y, x) = \arctan (\frac{y}{x})\) whenever \(x>0\).

    Conversely, to go from \((r, \theta)\) to \((x, y)\), we use the formulas: \(\begin{align*} x & = r \cos \theta \\[4px] y & = r \sin \theta \end{align*}\)
  • The \(exponential\ form\ of\ complex\ numbers\) also makes multiplying complex numbers much easier — much like the same way rectangular coordinates make addition easier.

    For example, given two complex numbers \(z_1 = r_1 e^{i \theta_1}\) and \(z_2 = r_2 e^{i \theta_2}\),

    we can now multiply them together as follows:

    \(\begin{align*} z_1 z_2 & = r_1 e^{i \theta_1} \cdot r_2 e^{i \theta_2} \\ & = r_1 r_2 e^{i(\theta_1 + \theta_2)} \end{align*}\)

    In the same spirit, we can also divide the same two numbers as follows:

    \(\begin{align*} \frac{z1}{z2} & = \frac{r_1 e^{i \theta_1}}{r_2 e^{i \theta_2}} \\ & = \frac{r_1}{r_2} e^{i (\theta_{1}-\theta_2)} \end{align*}\)

Note

  • To be sure, these do presuppose properties of exponent such as \(e^{z_1+z_2}=e^{z_1} e^{z_2}\) and \(e^{-z_1} = \frac{1}{e^{z_1}}\), which for example can be established by expanding the power series of \(e^{z_1}\), \(e^{-z_1}\) and \(e^{z_2}\).
  • Had we used the \(rectangular\ notation\) \(x + iy\) instead, the same division would have required multiplying by the complex conjugate in the \(numerator\) and \(denominator\).

    With the \(polar\ coordinates\), the situation would have been the same (save perhaps worse).
  • If anything, the \(exponential form\) sure makes it easier to see that:
    • multiplying two complex numbers is really the same as:

      multiplying magnitudes and adding angles,
    • dividing two complex numbers is really the same as:

      dividing magnitudes and subtracting angles.

the most remarkable formula in mathematics

Indeed, whether it’s \(Euler’s\ identity\) or \(complex\ logarithm\),

\(Euler’s\ formula\) seems to leave no stone unturned whenever expressions such \(\sin\), \(i\) and \(e\) are involved.

It’s a powerful tool whose mastery can be tremendously rewarding,

and for that reason is a rightful candidate of “the most remarkable formula in mathematics”.

Description Statement
Euler’s formula \(e^{ix} = \cos x + i \sin x\)
Euler’s identity \(e^{i \pi} + 1 = 0\)
Complex number (exponential form) \(z = r e^{i \theta}\)
Complex exponential \(e^{x+iy} = e^x (\cos y + i \sin y)\)
Sine (exponential form) \(\sin x = \dfrac{e^{ix}-e^{-ix}}{2i}\)
Cosine (exponential form) \(\cos x = \dfrac{e^{ix} + e^{-ix}}{2}\)
Tangent (exponential form) \(\tan x = \dfrac{e^{ix}-e^{-ix}}{i(e^{ix} + e^{-ix})}\)
Hyperbolic sine (exponential form) \(\sinh z = \dfrac{\sin iz}{i}\)
Hyperbolic cosine (exponential form) \(\cosh z = \cos iz\)
Hyperbolic tangent (exponential form) \(\tanh z = \dfrac{\tan iz}{i}\)
Complex logarithm \(\ln z = \ln |z| + i\phi\)
General complex exponential \(a^z = e^{z \ln a}\)
De Moivre’s theorem \((\cos x + i \sin x)^n = \cos nx + i \sin nx\)
Additive identity of sine \(\sin (x+y) = \sin x \cos y + \cos x \sin y\)
Additive identity of cosine \(\cos (x+y) = \cos x \cos y-\sin x \sin y\)

SciTech-Math-Complex Analysis复分析: Complex复数 + De Moivre's Formula:帝魔服公式 + Euler's Formula:欧拉公式的更多相关文章

  1. Number 强制类型转换 int 强制转换整型 float 强制转换浮点型 complex 强制转换成复数 bool 强制转换成布尔类型,结果只有两种,要么True 要么 False """bool 可以转换所有的数据类型 everything"""

    # ###Number 强制类型转换 var1 = 5 var2 = 4.85 var3 = True var3_2 = False var4 = 3+9j var5 = "888777&q ...

  2. De Moivre–Laplace theorem 掷硬币

    De Moivre–Laplace theorem - Wikipedia https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theore ...

  3. De Moivre–Laplace theorem

    网址:https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem De Moivre–Laplace 中心极限定理的证明.主要用到s ...

  4. A brief introduction to complex analysis

    \(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (compl ...

  5. [Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane

    Exercises 3.2 21. (a). For $\omega = sinz$, what is the image of the semi-infinite strip $S_1 = \{x+ ...

  6. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  7. Number (float bool complex)浮点型、bool 布尔型 True、False 、complex 复数类型

    # Number (float bool complex) # ### float 浮点型 就是小数 # (1) 表达形式一 floatvar = 3.14 print(floatvar) #获取类型 ...

  8. 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl

    因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...

  9. 采用C/C++语言如何实现复数抽象数据类型Complex

    记录一下! 采用C/C++语言如何实现复数抽象数据类型Complex #include <stdio.h> typedef struct Complex { double e1; // 实 ...

  10. 侯捷老师C++大系之C++面向对象开发:(一)不带指针的类:Complex复数类的实现过程

    一.笔记1.C++编程简介 2.头文件与类的声明 防卫式声明#ifndef __COMPLEX__#define __COMPLEX__ …… #endif头文件的布局模板简介template< ...

随机推荐

  1. 时间工具之“Java8 LocalDate 根据给定的日期,获取该日期上一周的周一周日,以及TemporalAdjusters的API”

    一.场景 我们的周报需要获取该月的第一个周的星期一和星期日,用于计算该星期的功能业绩(如:上产品数量) 2022-04-25 00:00:00 到 2022-05-01 23:59:592022-05 ...

  2. Vue3 组件通信方式小结

    也是零零散散用 vue3 来搞一些前端的页面, 每次在组件通信, 主要是传数据这块总是忘记, 大多无非父传子, 子传父等情况, 这里再来做一个小结. 父传子 Props 最常见的就是父组件给子组件传递 ...

  3. HarmonyOS数据防泄漏服务(DLP)开发实战

    系统级数据防护的核心能力解析 在企业级文档管理.教育课件分发.金融合同处理等场景中,数据泄露风险贯穿文件生命周期.HarmonyOS提供的数据防泄漏服务(DLP),通过沙箱隔离.端云协同认证.细粒度权 ...

  4. codeup之统计同成绩学生人数

    Description 读入N名学生的成绩,将获得某一给定分数的学生人数输出. Input 测试输入包含若干测试用例,每个测试用例的格式为 第1行:N 第2行:N名学生的成绩,相邻两数字用一个空格间隔 ...

  5. mp4文件下载,而不是在线播放

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. A* 合集

    板子那篇烂尾了,等 \(25\) 年 \(csp\) 时再继续写吧 CF1620E Replace the Numbers 点击查看代码 #include<bits/stdc++.h> u ...

  7. odoo18运行报错问题解决

    File "/Users/melon/.pyenv/versions/3.11.9/lib/python3.11/code.py", line 90, in runcode exe ...

  8. P8842 [传智杯 #4 初赛] 小卡与质数2

    传送门 变态数学题(主考位运算与素数筛). 读完题看起来有点难做,因为质数的出现是根本没有可以使用的规律.暴力的话也很好想,枚举 $y$.但是肯定会超时.我们也可以换个方向枚举.对,筛出素数,再返过去 ...

  9. Golang协程和线程区别

    一.进程.线程.协程介绍 进程:系统中所有的应用程序都是以进程(process)的方式运行,是系统进行资源分配和调度的基本单位,每个进程都有自己的独立的地址空间,使得进程之间的地址空间相互隔离. 线程 ...

  10. 当我们在聊「开源大数据调度系统Taier」的数据开发功能时,到底在讨论什么?

    原文链接:当我们在聊「开源大数据调度系统Taier」的数据开发功能时,到底在讨论什么? 课件获取:关注公众号__ "数栈研习社",后台私信 "Taier"__ ...