MySQL查询优化之explain的深入解析
在分析查询性能时,考虑EXPLAIN关键字同样很管用。EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数。explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作。
一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列:
| 项 | 说明 |
| id | MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。 |
| select_type 查询类型 | 说明 |
| SIMPLE | 简单的 select 查询,不使用 union 及子查询 |
| PRIMARY | 最外层的 select 查询 |
| UNION | UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集 |
| DEPENDENT UNION | UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集 |
| SUBQUERY | 子查询中的第一个 select 查询,不依赖于外 部查询的结果集 |
| DEPENDENT SUBQUERY | 子查询中的第一个 select 查询,依赖于外部 查询的结果集 |
| DERIVED | 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。 |
| UNCACHEABLE SUBQUERY | 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。 |
| UNCACHEABLE UNION | UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询 |
| 项 | 说明 |
| table | 输出行所引用的表 |
| type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 | 说明 |
| system | 表仅有一行(=系统表)。这是 const 连接类型的一个特例。 |
| const | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
| eq_ref | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
| ref | 连接不能基于关键字选择单个行,可能查找 到多个符合条件的行。 叫做 ref 是因为索引要 跟某个参考值相比较。这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值。 |
| ref_or_null | 如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找。 |
| index_merge | 说明索引合并优化被使用了。 |
| unique_subquery | 在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr) |
| index_subquery | 在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr) |
| range | 只检索给定范围的行,使用一个索引来选择 行。key 列显示使用了哪个索引。当使用=、 <>、>、>=、<、<=、IS NULL、<=>、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range。 |
| index | 全表扫描,只是扫描表的时候按照索引次序 进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。 |
| all | 最坏的情况,从头到尾全表扫描。 |
| 项 | 说明 |
| possible_keys | 指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。 |
| 项 | 说明 |
| key | MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引 |
| 项 | 说明 |
| key_len | 使用的索引的长度。在不损失精确性的情况 下,长度越短越好。 |
| 项 | 说明 |
| ref | 显示索引的哪一列被使用了 |
| 项 | 说明 |
| rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
| 项 | 说明 |
| rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。
| extra 项 | 说明 |
| Using filesort | 表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序” |
| Using temporary | 表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。 |
下面来举一个例子来说明下 explain 的用法。
先来一张表:
CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);
再插几条数据:
INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');
需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。
先查查试试看:
EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1\G
看看部分输出结果:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 3
Extra: Using where; Using filesort
1 row in set (0.00 sec)
很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。
ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );
结果有了一定好转,但仍然很糟糕:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: range
possible_keys: x
key: x
key_len: 8
ref: NULL
rows: 1
Extra: Using where; Using filesort
1 row in set (0.00 sec)
type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:
DROP INDEX x ON article;
然后建立新索引:
ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;
接着再运行查询:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ref
possible_keys: y
key: y
key_len: 4
ref: const
rows: 1
Extra: Using where
1 row in set (0.00 sec)
可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class 和 room。
CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;
然后再分别插入大量数据。插入数据的php脚本:
<?php
$link = mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into class(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into book(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into phone(card) values({$j})";
mysql_query($sql);
}
mysql_query("COMMIT");
?>
然后来看一个左连接查询:
explain select * from class left join book on class.card = book.card\G
分析结果是:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:
ALTER TABLE `book` ADD INDEX y ( `card`);
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX y ON book;
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化。
然后来看一个右连接查询:
explain select * from class right join book on class.card = book.card;
分析结果是:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:
DROP INDEX x ON class;
建立新索引。
ALTER TABLE `book` ADD INDEX y ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化。
最后来看看 inner join 的情况:
explain select * from class inner join book on class.card = book.card;
结果:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
删除旧索引:
DROP INDEX y ON book;
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
建立新索引。
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。
我们再来看看三表查询的例子
添加一个新索引:
ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
*************************** 3. row ***************************
id: 1
select_type: SIMPLE
table: phone
type: ref
possible_keys: z
key: z
key_len: 4
ref: test.book.card
rows: 260
Extra: Using index
3 rows in set (0.00 sec)
后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。
MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。
MySQL查询优化之explain的深入解析的更多相关文章
- MySQL查询优化之explain
在分析查询性能时,考虑EXPLAIN关键字同样很管用.EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作.以及MySQL成功返回结果集需要执行的行数.expla ...
- MySQL查询优化之explain详解
MySQL explain命令显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了: ...
- MySQL查询优化利刃-EXPLAIN
有一个 ? 遇到这样一个疑问:当where中In一个索引字段,那么在查询中还会使用到索引吗? SELECT * FROM table_name WHERE column_index in (expr) ...
- MySQL执行计划explain的key_len解析
前言:当用Explain查看SQL的执行计划时,里面有列显示了 key_len 的值,根据这个值可以判断索引的长度,在组合索引里面可以更清楚的了解到了哪部分字段使用到了索引.下面演示中,表结构的合理性 ...
- MySQL 优化之 EXPLAIN 关键字
MySQL查询优化之explain的深入解析 0. 准备 首先执行如下的 sql 语句: CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsi ...
- MySQL查询优化(转)
在分析性能欠佳的查询时,应考虑: 1) 应用程序是否正获取超过需要的数据,即访问了过多的行或列. 2) Mysql服务器是否分析了超过需要的行. 如果发现访问的数据行数很大,而生成的结果中数据行很少, ...
- 一本彻底搞懂MySQL索引优化EXPLAIN百科全书
1.MySQL逻辑架构 日常在CURD的过程中,都避免不了跟数据库打交道,大多数业务都离不开数据库表的设计和SQL的编写,那如何让你编写的SQL语句性能更优呢? 先来整体看下MySQL逻辑架构图: M ...
- MySQL执行计划explain
一.简介 分析查询慢的原因,在查询语句前加explain即可.如: 二.输出格式 2.0 测试数据 # 表user_info CREATE TABLE `user_info` ( `id` bigin ...
- 1025WHERE执行顺序以及MySQL查询优化器
转自http://blog.csdn.net/zhanyan_x/article/details/25294539 -- WHERE执行顺序-- 过滤比较多的放在前面,然后更加容易匹配,从左到右进行执 ...
随机推荐
- MYSQL 5.7 无法启动(Could not open error log file errno 2)
前两天电脑中毒, 病毒好像把mysql的 log.err 文件给删掉了.然后服务一直启动不了:Could not open error log file errno 2. 然后疯狂百度,搜索的结果大多 ...
- 理解 Cinder 架构 - 每天5分钟玩转 OpenStack(45)
从本节开始我们学习 OpenStack 的 Block Storage Service,Cinder 理解 Block Storage 操作系统获得存储空间的方式一般有两种: 通过某种协议(SAS,S ...
- Ubuntu 系统 update-rc.d 命令
Ubuntu或者Debian系统中update-rc.d命令,是用来更新系统启动项的脚本.这些脚本的链接位于/etc/rcN.d/目录,对应脚本位于/etc/init.d/目录.在了解update-r ...
- spring类型自动转换——@InitBinder和Converter
spring有2种类型转换器,一种是propertyEditor,一种是Converter.虽然都是类型转换,但是还是有细微差别. 所以这里以一个例子的形式来分析一下这2种类型转换的使用场景和差别. ...
- BI建模原则和常见问题
BI建模的质量直接影响数据仓库项目的质量,所以在建模前,要对数据仓库的架构组成.大小以及模型功能有明确的定义. 影响BI数据仓库建模的因素众多,往往会随着项目的具体情况不同而变化.但有些原则是相通的, ...
- c# 传递Null的string值导致的调用C++的dll报错 Attempted to read or write protected memory.
c# 调用C++的dll报错 Attempted to read or write protected memory: 原因是:c# 传递Null的string值导致的,将Null改为string ...
- C#.NET 大型企业信息化系统集成快速开发平台 4.2 版本 - 大型软件系统客户端数据同步的问题解决
作为一个完整的整体信息化解决方案需要有足够强大的各种功能,这些功能相对独立,又互相依存.当有需要这样的功能时可以随时拿出来用,适当修改一下就可以满足要求.只有这样才能快速开发各种信息化系统,才能满足各 ...
- 深入理解JVM内幕(转)
转自:http://blog.csdn.net/zhoudaxia/article/details/26454421/ 每个Java开发者都知道Java字节码是执行在JRE((Java Runtime ...
- 配置文件类 Properties
Properties(配置文件类): 主要用于生产配置文件与读取配置文件的信息. Properties属于集合类,继承于Hashtable. Properties要注意的细节: 1. 如果配置文 ...
- css设置select高度(IE,FF,Chrome)[转]
大家都知道select是无法设置高度和边框颜色等等的在ie67下面,其他的都是可以的,所以有时候为了在所有的浏览器下显示都一致,就使用了 js的模拟,这个是大家经常碰到的,js不光要模拟外观还有模拟事 ...